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Abstract

We have developed an on-line magnetic spectrometer to measure energy dis-

tributions of fast electrons generated from ultra-intense laser-solid interactions.

The spectrometer consists of a sheet of plastic scintillator, a bundle of non-

scintillating plastic fibers, and an sCMOS camera recording system. The design

advantages include on-line capturing ability, versatility of detection arrangemen-

t, and resistance to harsh in-chamber environment. The validity of the instru-

ment was tested experimentally. This spectrometer can be applied to the char-

acterization of fast electron source for understanding fundamental laser-plasma

interaction physics and to the optimization of high-repetition-rate laser-driven

applications.
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1. Introduction

The interaction of ultra-intense laser with overdense plasma produces large-

current relativistic (fast) electron beams. Knowing the electron energy distri-

bution and its dependence on laser and target parameters are important to the

understanding of fundamental laser-plasma physics, and to the optimization of5

electron sources for applications, e.g., the fast ignition (FI)[1] approach to in-

ertial confinement fusion (ICF), laser-driven ion acceleration[2, 3] and bright

radiation sources development[4, 5].

The electron energy spectrum is normally measured with a dipole magnet

based electron spectrometer. The electrons are first dispersed according to the10

different kinetic energies in the magnetic field and then recorded by the detec-

tor(s). Three major detection methods previously reported are image plates

(IPs), scintillating fibers and scintillator screen both imaged directly with C-

CD/sCOMS camera. The major drawback of IPs[6, 7] is the need to vent the

vacuum chamber to read the stored signals. Therefore IPs are not appropriate15

for high-repetition-rate experiments. The scintillator fibers[8–11] are normally

placed parallel to the magnetic lines along the sides of both plates. The effects

of fringe field on electron deflection trajectory are inevitable[12]. In addition,

the effective fiber length which produces scintillating light is only a small por-

tion of the fiber. The longer redundant fibers beyond the magnetic field region20

will produce background scintillating light when exposed to optical light or par-

ticles. To eliminate the undesired background, Chen et al[10] has put the CCD

camera inside the vacuum chamber to shorten the fiber length. However, the

CCD suffered from the strong electromagnetic pulses (EMP)[13] in the harsh

environment and may not work properly[14]. When scintillator screens[15–18]25

were used, they were normally imaged directly with an optical lens coupled CCD

camera. Extensive shielding is an essential requirement to avoid scattered op-

tical light entering the imaging system. Due to the large aspect ratio of screen

(> 10) and considerable length along the dispersion direction (normally tens

of centimeters), effectively only a very small portion of CCD chip was used,30
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limiting the spatial resolution on the scintillator detector by the imaging sys-

tem to only several hundred microns[2]. Another important issue is that the

imaging system needs be realigned when changing the positions of the electron

spectrometer to measure electron spectra along other directions.

In this paper, we present a novel design of a flexible, on-line magnetic spec-35

trometer, which utilizes the scintillator screen to produce scintillating light and

employs the non-scintillating fibers to guide light to high frame-rate sCMOS

camera imaging system. This instrument combines the advantages of the on-

line capability of scintillator, flexibility and versatile transforming configuration

of the fibers, and resistance to harsh environment by moving the recording elec-40

tronics out of the vacuum chamber.

2. Spectrometer design

The schematic of the spectrometer is shown in Fig. 1(a) (the imaging sys-

tem is not presented). A pair of parallel NdFeB permanent magnets, shown

in light blue, deflects the electrons according to their different kinetic energies45

(representative lines in black). A thin sheet of plastic scintillator (in dark red)

is inserted inside the magnetic spectrometer to convert the electron signal into

visible optical light. The scintillator screen can facilitate an on-line detection

capability since the emitted light from the scintillator can be captured by the

imaging system without disturbing the detector. This would attract more in-50

terests especially in high-repetition-rate single-shot evaluations for statistical

analysis.

A bundle of fibers, arranged in multiple rows of linear arrays, are placed with

one end in close contact with the scintillator sheet. The light signals from the

scintillator are then relayed by the fibers to the imaging system placed outside55

the vacuum chamber[19]. A high frame-rate sCMOS camera located outside

the vacuum chamber is used to record the optical light transmitted through a

glass window. Considering the aspect ratio of sCMOS chip size, the other end

of the fiber bundle is rearranged to an areal configuration. The insets in Fig. 1

3



(a) illustrate the linear and areal interfaces of the fiber bundle, respectively. A60

photo of the assembly is shown in Fig. 1 (b).

Trapezoidal-shaped (truncated square) magnets (marked by dashed-line in

Fig. 2 (a)) are used in this work. The magnet plates have an overall side-length

of 200 mm and a separation gap of 10 mm. They are enclosed with a 10-mm-

thick iron yoke. The spatial distribution of the magnetic field strength in the65

mid-plane was mapped out with a Hall probe, and is shown as the grayed area

in Fig. 2(a). The peak field strength is 0.12 T. The fringed field decreases from

0.10 T at the edge to 0.05 T 10 mm away from the magnet plates. If the detector

is not inside the uniform region and there is no collimator at the entrance, the

electron trajectories and energy dispersions need to be precisely simulated using70

a particle tracing program[12] in order to include the effects of fringe fields.

Simplified calculations using simple lorentz force consideration can be obtained

by minimizing fringe field effects with a collimator placed inside a central region

of 160 mm with field strength variation of only 1.26% (standard deviation).

An ultralow-carbon stainless-steel collimator was chosen as the entrance. The75

collimator is 30 mm long with a 3.5 mm hole in the center (yellow in Fig. 2(a)).

The magnetic field increases from 0 to 0.12 Tesla within 13 mm beyond the

collimator hole. The scintillator screen was also inserted into the near-uniform

magnetic field region further reducing the effect of fringe field. A visible CW

laser (red dash line) was used to align the spectrometer.80

The plastic scintillator is a DRZ fluorescent screen (Gd2O2S:Tb, type Pl-200)

having dimensions of 200 mm (length) × 10 mm (width) × 630 µm (thickness)

and emits light at 546 nm when impacted by energetic electrons. The scintillator

screen itself has a higher spatial resolution (a few 10’s of microns) than the large-

diameter scintillator fibers (typical 500 µm)[10] and it is not the limiting factor85

for the energy resolution. A 2 µm-thick aluminum-anodized mylar film was

placed before the scintillator to block scatted light. This type of scintillator has

been calibrated using ultrashort electron beam from a radio frequency linear

electron accelerator[20]. The 20 cm-long plastic scintillator sheet (dark-red line

in Fig. 1(a)) was positioned at 45◦ with respect to the entrance axis. In this case,90
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Figure 1: (color online) The schematic (a) and photograph (b) of the magnetic spectrometer.

The regions in light blue and in green are magnet plates and the yoke, respectively. A

collimator was inserted into the region of near-uniform magnetic field strength. The red lines

indicate the fiber bundles. Two insets in (a) show the linear and areal interfaces of the fiber

bundle.
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the spectrometer works in the focusing mode, i.e. finite-diameter collimated

electron beam is bent by the magnet and overlaps on the detector plane[11]. The

corresponding trajectories of the electrons with different energies were computed

by calculating the deflection angle according to the Lorentz force, which are

shown in Fig. 2(a).95

A total number of 875 equally spaced 1-meter-long plastic fibers are placed in

close contact with the scintillator, to sample and guide the optical light signals

out of the spectrometer. The fiber bundle was further wrapped with aluminum

to avoid stray light. The cross-talk between channels was also checked using

a point laser source to be <4%. Although the spatial resolution of the non-100

scintillating fibers is not as high as that of IPs, they were chosen due to several

advantages. Firstly, it is easier to shield the imaging system from scattered light-

s, and no optics are required in the crowded chamber, saving space for other

diagnostics. Secondly, the fibers can be easily bent. Therefore, the imaging sys-

tem can be setup using chamber windows away from the influences of radiations105

(especially EMPs) and also to avoid conflicts with other diagnostics. Thirdly,

the plastic fibers can be rearranged into a matrix to fit the sCMOS/CCD camera

sensor for better imaging. Fourthly, the imaging component does not require

alignment, when re-positioning of the main body of the spectrometer becomes

necessary to measure the electron spectra along other directions. Lastly, the110

fibers are insensitive to the radiations, hence no extensive shieldings are need-

ed.

Each fiber has a diameter of 0.75 mm. The separation of the centers of

adjacent fibers is 1 mm. In the scintillator end, five fibers were employed in

the non-dispersion direction for each specific electron energy, thus forming a115

matrix of 5 × 175 fibers. This gives rise to 175 energy points in the disper-

sion direction. Figure 2(b) shows the energy dispersion and the resolving power

(E/∆E) with respect to the electron energy (E), where ∆E is the energy reso-

lution at E. The electron traces in the magnetic field could be calculated using

equation d (γm #»v ) /dt = −e · #»v ×

#»

B/c. Where γ is the relativity factor, m is120

the electron mass, e is the electronic charge,
#»

B is the magnetic field, #»v is the
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speed of electrons and c is the speed of light. In this case, E is calculated to be

ranging from 0.5 MeV to 4.8 MeV. The energy resolutions of the spectrometer

are determined by diameter of fibers and the beam sizes on scintillator. The

typical electron trajectories in the energy range of 1-4.5 MeV for an acceptance125

angle of 2.4×10−4 sr are shown in Fig. 2(a). The trajectories of mono-energetic

electrons entrancing the magnetic at two edges of the collimator will crossed on

the scintillator at two different positions as shown in Fig. 2(a). The distance

between these two positions would be the beam size on the scintillator and it

is marked by the size of the black dots in Fig. 2(a). The beam sizes on the130

scintillator (black dots) are determined by the electron divergence, the accep-

tance angle of the collimator, electron energies, magnetic field and the position

of scintillator. It is less than 0.75 mm for energies lower than 1.4 MeV. For

electrons with energies higher than 1.4 MeV, the beam size is larger than the

fiber diameter, which becomes a predominant factor limiting the energy reso-135

lution. As shown in Fig. 2(b), the resolving power first increases from 30 to

77 for the electron energies of 0.5-1.4 MeV due to the fiber diameter and then

decreases to 57 from 1.4 MeV to 4.8 MeV when the beam sizes are bigger than

fiber diameter. Since smaller diameter optical fibers (a few 10’s of microns)

are available, decreasing the acceptance angle or the diameter of the fibers will140

improve the energy resolution.

The other end of the fiber bundle is in close contact with a thin glass win-

dow. Due to the fiber flexibility, the window could be selected from any flange

on the chamber, preferably away from the laser incident plane. A 16-bit sC-

MOS camera (ORCA-Flash4.0 LT, from Hamamatsu Photonics) coupled with145

a f=6-12mm/F1.6 lens was used to image the fibers. The sCMOS camera was

chosen with consideration of several superior advantages: small pixel size (6.5

µm), high frame rate and low cost while remaining comparable in quantum

efficiency to EMCCD. The fiber bundle was re-organised to an areal configura-

tion of 25× 35 fibers to maximize the usage of the sCMOS chip such that the150

resolution of the imaging system is ∼50 µm/pixel. Similar work was reported

by Kodama et al that two-dimensional fibers were rearranged to a line to fit a
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streak camera[21]. The light transport efficiency of the fiber bundle and imag-

ing system was relatively calibrated and the variation between energy channels

was 4.5% (standard deviation). Since the camera was detached from the target155

chamber, the shielding was much easier.

3. Experiment and results

The experiment was carried out using the 200 TW Ti: sapphire laser at

Shanghai Jiao Tong University. The setup is schematically shown in Fig. 3.

After reflected from the high reflection mirror (M), the 25 fs p-polarized laser160

beam was focused by an f/4 off-axis parabola mirror (OAP) at 36◦ to the target

normal on 2-µm-thick iron foil targets. The focal spot is 6 µm in diameter

enclosing 25% of total energy. In this experiment, the energy on target is 1 J,

giving a peak intensity of ∼ 4 × 1019W/cm2. The electron spectrometer was

positioned 17 cm away from the target in the front side at an angle 12◦ to the165

target surface for measuring the spectra of electrons emitted along the target

surface. We tested the flexibility of the spectrometer by quickly changing the

detection direction from 12◦ to 45◦ in less than 5 minutes. The energy spectra

of electrons emitted at 45◦ was much weaker than that at 12◦. The acceptance

solid angle is 2.4× 10−4 sr.170

An example raw data measured along an angle of 12◦ to the target surface is

shown in Fig. 4(a). The light intensities from the fibers have been normalized

and are comparable with each other. Each of the five columns (for I, II, III, IV

and V sub-groups) consists of 35 rows and each row corresponds to one energy

channel. The electron energy increases with the increment of channel number175

from top left to bottom right. The overall trend is that the measured light

intensities decrease gradually with electron energies, indicating a decreasing

continuous energy spectrum (assuming a a flat calibration curve with electron

energies). A null test was made by blocking the entrance collimator with a piece

of 5-mm-thick lead, resulting in a background count of <10. This is more than180

two orders of magnitude lower than the case when the block was removed.
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Figure 2: (color online) (a) Trajectories of electrons in magnetic field (gray area). Two

colorbars depict the magnetic field distribution and the electron trajectories, respectively.

Black circles show the electron beam sizes on the scintillator. (b) Dispersion and energy

resolving power with respect to the electron energies.
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Figure 3: (color online) Schematic of the experimental setup. After reflected from the high

reflective mirror (M), the laser beam was focused by an off-axis parabola mirror (OAP) to

the solid target. The electron spectrometer was placed in the target front side to measure the

energy distribution of the fast electrons emitted close to the surface direction. The fluorescent

light from the scintillator screen were guided by the fiber bundle and detected with a lens-

coupled sCMOS imaging system. A silver mirror (Ag) was used to avoid the γ-ray photons

or high-energy particles directly bombarding the sCMOS sensor.
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channel. A fit of the experiment datas was also plotted by considering a two-temperature

distribution of electrons.
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The arrangement of the fiber bundle can cause fluctuations of coupling effi-

ciency between scintillator and fibers. To reduce the fluctuation in the data, the

maximum and minimum values for each energy channel were removed. Taking

into account the energy resolutions, we calculated the electron spectra using the185

remaining three values of the fibers in each energy channel. The spectral distri-

bution of the sampled fast electrons showing a two-temperature distribution is

presented in Fig. 4(b) where the error bars are the data fluctuations from the

remaining three values in the same energy channel.

The reliability and the on-line capability were also tested experimentally.190

10 consecutive shots were taken in 3 minutes for the same laser and target

parameters. The shot frequency was only determined by the time of replacing

targets, which could be as short as a few 10’s of seconds. Compared with

the use of IPs, which need to vent the chamber to read the stored signals,

the use of scintillator coupling with imaging system is much more attractive195

in high-repetition-rate experiments. One could obtain the data on electron

energy spectrum shortly after each laser shot, which is the prerequisite to source

optimization for applications. The shot-to-shot fluctuations of the spectra was

measured to be less than 5%, which is within the error bars shown in Fig. 4.

4. summary200

In summary, we have designed and tested a flexible, on-line electron spec-

trometer using a combination of plastic scintillator, plastic fiber array and sC-

MOS camera. This design would allow on-line measurement of fast electrons

produced by high-repetition laser pulses. Better energy resolution can be ob-

tained by using optical fibers with smaller diameters.205

This spectrometer can also provide, though relatively modest, one-dimensional

angular resolution from the five fiber channels perpendicular to the dispersion

direction. The angular resolution could be improved by enlarging the entrance

pinhole with a long slit and increasing the number of fiber channels in the plane

perpendicular to the dispersion direction. With further revision, this novel210
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design could be employed to measure the angular and energy distributions of

low-divergence laser wakefield accelerated electron beams. Continuous improve-

ment and development could facilitate many high-power laser-plasma research

projects with a versatile diagnostic for fast electron generation.
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