31 research outputs found

    Genetic Characterization of Listeria from Food of Non-Animal Origin Products and from Producing and Processing Companies in Bavaria, Germany

    Get PDF
    Reported cases of listeriosis from food of non-animal origin (FNAO) are increasing. In order to assess the risk of exposure to Listeria monocytogenes from FNAO, the genetic characterization of the pathogen in FNAO products and in primary production and processing plants needs to be investigated. For this, 123 samples of fresh and frozen soft fruit and 407 samples of 39 plants in Bavaria, Germany that produce and process FNAO were investigated for Listeria contamination. As a result, 64 Listeria spp. isolates were detected using ISO 11290-1:2017. Environmental swabs and water and food samples were investigated. L. seeligeri (36/64, 56.25%) was the most frequently identified species, followed by L. monocytogenes (8/64, 12.50%), L. innocua (8/64, 12.50%), L. ivanovii (6/64, 9.38%), L. newyorkensis (5/64, 7.81%), and L. grayi (1/64, 1.56%). Those isolates were subsequently sequenced by whole-genome sequencing and subjected to pangenome analysis to retrieve data on the genotype, serotype, antimicrobial resistance (AMR), and virulence markers. Eight out of sixty-four Listeria spp. isolates were identified as L. monocytogenes. The serogroup analysis detected that 62.5% of the L. monocytogenes isolates belonged to serogroup IIa (1/2a and 3a) and 37.5% to serogroup IVb (4b, 4d, and 4e). Furthermore, the MLST (multilocus sequence typing) analysis of the eight detected L. monocytogenes isolates identified seven different sequence types (STs) and clonal complexes (CCs), i.e., ST1/CC1, ST2/CC2, ST6/CC6, ST7/CC7, ST21/CC21, ST504/CC475, and ST1413/CC739. The core genome MLST analysis also showed high allelic differences and suggests plant-specific isolates. Regarding the AMR, we detected phenotypic resistance against benzylpenicillin, fosfomycin, and moxifloxacin in all eight L. monocytogenes isolates. Moreover, virulence factors, such as prfA, hly, plcA, plcB, hpt, actA, inlA, inlB, and mpl, were identified in pathogenic and nonpathogenic Listeria species. The significance of L. monocytogenes in FNAO is growing and should receive increasing levels of attention

    Alternative Magnesium Sulfate Dosing Regimens for Women With Preeclampsia: A Population Pharmacokinetic Exposure-Response Modeling and Simulation Study

    Get PDF
    Magnesium sulfate is the anticonvulsant of choice for eclampsia prophylaxis and treatment; however, the recommended dosing regimens are costly and cumbersome and can be administered only by skilled health professionals. The objectives of this study were to develop a robust exposure-response model for the relationship between serum magnesium exposure and eclampsia using data from large studies of women with preeclampsia who received magnesium sulfate, and to predict eclampsia probabilities for standard and alternative (shorter treatment duration and/or fewer intramuscular injections) regimens. Exposure-response modeling and simulation were applied to existing data. A total of 10 280 women with preeclampsia who received magnesium sulfate or placebo were evaluated. An existing population pharmacokinetic model was used to estimate individual serum magnesium exposure. Logistic regression was applied to quantify the serum magnesium area under the curve-eclampsia rate relationship. Our exposure-response model-estimated eclampsia rates were comparable to observed rates. Several alternative regimens predicted magnesium peak concentration < 3.5 mmol/L (empiric safety threshold) and eclampsia rate ≤ 0.7% (observed response threshold), including 4 g intravenously plus 10 g intramuscularly followed by either 8 g intramuscularly every 6 hours × 3 doses or 10 g intramuscularly every 8 hours × 2 doses and 10 g intramuscularly every 8 hours × 3 doses. Several alternative magnesium sulfate regimens with comparable model-predicted efficacy and safety were identified that merit evaluation in confirmatory clinical trials

    Pharmacokinetics and Pharmacodynamics of Once-Daily versus Twice-Daily Raltegravir in Treatment-Naïve HIV-Infected Patients

    Get PDF
    ABSTRACT QDMRK was a phase III clinical trial of raltegravir given once daily (QD) (800-mg dose) versus twice daily (BID) (400 mg per dose), each in combination with once-daily coformulated tenofovir-emtricitabine, in treatment-naive HIV-infected patients. Pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) analyses were conducted using a 2-step approach: individual non-model-based PK parameters from observed sparse concentration data were determined, followed by statistical analysis of potential relationships between PK and efficacy response parameters after 48 weeks of treatment. Sparse PK sampling was performed for all patients (QD, n = 380; BID, n = 384); selected sites performed an intensive PK evaluation at week 4 (QD, n = 22; BID, n = 20). In the intensive PK subgroup, daily exposures (area under the concentration-time curve from 0 to 24 h [AUC 0–24 ]) were similar between the two regimens, but patients on 800 mg QD experienced ∼4-fold-higher maximum drug concentration in plasma ( C max ) values and ∼6-fold-lower trough drug concentration ( C trough ) values than those on 400 mg BID. Geometric mean (GM) C trough values were similarly lower in the sparse PK analysis. With BID dosing, there was no indication of any significant PK/PD association over the range of tested PK parameters. With QD dosing, C trough values correlated with the likelihood of virologic response. Failure to achieve an HIV RNA level of <50 copies/ml appeared predominantly at high baseline HIV RNA levels in both treatment arms and was associated with lower values of GM C trough in the 800-mg-QD arm, though other possible drivers of efficacy, such as time above a threshold concentration, could not be evaluated due to the sparse sampling scheme. Together, these findings emphasize the importance of the shape of the plasma concentration-versus-time curve for long-term efficacy

    Safety, Tolerability, and Efficacy of Raltegravir in a Diverse Cohort of HIV-Infected Patients: 48-Week Results from the REALMRK Study

    Get PDF
    The racial diversity and gender distribution of HIV-infected patients make it essential to confirm the safety and efficacy of raltegravir in these populations. A multicenter, open-label, single-arm observational study was conducted in a diverse cohort of HIV-infected patients (goals: ≥25% women; ≥50% blacks in the United States), enrolling treatment-experienced patients failing or intolerant to current antiretroviral therapy (ART) and treatment-naive patients (limited to ≤20%). All patients received raltegravir 400 mg b.i.d. in a combination antiretroviral regimen for up to 48 weeks. A total of 206 patients received study treatment at 34 sites in the United States, Brazil, Dominican Republic, Jamaica, and South Africa: 97 (47%) were female and 153 (74%) were black [116 (56%) in the United States]. Of these, 185 patients were treatment experienced: 97 (47%) were failing and 88 (43%) were intolerant to current therapy; 21 patients (10%) were treatment naive. Among treatment-intolerant patients, 55 (63%) had HIV-1 RNA<50 copies/ml at baseline. Overall, 15% of patients discontinued: 13% of men, 18% of women, 14% of blacks, and 17% of nonblacks. At week 48, HIV RNA was <50 copies/ml in 60/94 (64%) patients failing prior therapy, 61/80 (76%) patients intolerant to prior therapy, and 16/21 (76%) treatment-naive patients. Response rates were similar for men vs. women and black vs. nonblack patients. Drug-related clinical adverse events were reported by 8% of men, 18% of women, 14% of blacks, and 9% of nonblacks. After 48 weeks of treatment in a diverse cohort of HIV-infected patients, raltegravir was generally safe and well tolerated with potent efficacy regardless of gender or race

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity

    No full text
    Interpretation of whole-genome sequencing (WGS) data for foodborne outbreak investigations is complex, as the genetic diversity within processing plants and transmission events need to be considered. In this study, we analyzed 92 food-associated Listeria monocytogenes isolates by WGS-based methods. We aimed to examine the genetic diversity within meat and fish production chains and to assess the applicability of suggested thresholds for clustering of potentially related isolates. Therefore, meat-associated isolates originating from the same samples or processing plants as well as fish-associated isolates were analyzed as distinct sets. In silico serogrouping, multilocus sequence typing (MLST), core genome MLST (cgMLST), and pangenome analysis were combined with screenings for prophages and genetic traits. Isolates of the same subtypes (cgMLST types (CTs) or MLST sequence types (STs)) were additionally compared by SNP calling. This revealed the occurrence of more than one CT within all three investigated plants and within two samples. Analysis of the fish set resulted in predominant assignment of isolates from pangasius catfish and salmon to ST2 and ST121, respectively, potentially indicating persistence within the respective production chains. The approach not only allowed the detection of distinct subtypes but also the determination of differences between closely related isolates, which need to be considered when interpreting WGS data for surveillance

    Ultrasensitive Liquid Chromatography–Tandem Mass Spectrometric Methodologies for Quantification of Five HIV‑1 Integrase Inhibitors in Plasma for a Microdose Clinical Trial

    No full text
    HIV-1 integrase strand transfer inhibitors are an important class of compounds targeted for the treatment of HIV-1 infection. Microdosing has emerged as an attractive tool to assist in drug candidate screening for clinical development, but necessitates extremely sensitive bioanalytical assays, typically in the pg/mL concentration range. Currently, accelerator mass spectrometry is the predominant tool for microdosing support, which requires a specialized facility and synthesis of radiolabeled compounds. There have been few studies attempted to comprehensively assess a liquid chromatography–tandem mass spectrometry (LC–MS/MS) approach in the context of microdosing applications. Herein, we describe the development of automated LC–MS/MS methods to quantify five integrase inhibitors in plasma with the limits of quantification at 1 pg/mL for raltegravir and 2 pg/mL for four proprietary compounds. The assays involved double extractions followed by UPLC coupled with negative ion electrospray MS/MS analysis. All methods were fully validated to the rigor of regulated bioanalysis requirements, with intraday precision between 1.20 and 14.1% and accuracy between 93.8 and 107% at the standard curve concentration range. These methods were successfully applied to a human microdose study and demonstrated to be accurate, reproducible, and cost-effective. Results of the study indicate that raltegravir displayed linear pharmacokinetics between a microdose and a pharmacologically active dose
    corecore