90 research outputs found
Fast Low-Rank Matrix Learning with Nonconvex Regularization
Low-rank modeling has a lot of important applications in machine learning,
computer vision and social network analysis. While the matrix rank is often
approximated by the convex nuclear norm, the use of nonconvex low-rank
regularizers has demonstrated better recovery performance. However, the
resultant optimization problem is much more challenging. A very recent
state-of-the-art is based on the proximal gradient algorithm. However, it
requires an expensive full SVD in each proximal step. In this paper, we show
that for many commonly-used nonconvex low-rank regularizers, a cutoff can be
derived to automatically threshold the singular values obtained from the
proximal operator. This allows the use of power method to approximate the SVD
efficiently. Besides, the proximal operator can be reduced to that of a much
smaller matrix projected onto this leading subspace. Convergence, with a rate
of O(1/T) where T is the number of iterations, can be guaranteed. Extensive
experiments are performed on matrix completion and robust principal component
analysis. The proposed method achieves significant speedup over the
state-of-the-art. Moreover, the matrix solution obtained is more accurate and
has a lower rank than that of the traditional nuclear norm regularizer.Comment: Long version of conference paper appeared ICDM 201
Steady state risetimes of shock waves in the atmosphere
A square wave shape is used in the Pestorius algorithm to calculate the risetime of a step shock in the atmosphere. These results agree closely with steady shock calculations. The healing distance of perturbed shocks due to finite wave effects is then investigated for quasi-steady shocks. Perturbed 100 Pa shocks require on the order of 1.0 km travel distance to return to within 10 percent of their steady shock risetime. For 30 Pa shocks, the minimum recovery distance increases to 3.0 km. It is unlikely that finite wave effects can remove the longer risetimes and irregular features introduced into the sonic boom by turbulent scattering in the planetary boundary layer
Archimedes:The First Modern Type of Physicist in Ancient Time
Archimedes is the greatest natural scientist before the modern scientific revolution and he introduced the mathematical methods to physics and is also a rare ancient scientist who can skillfully manipulate the experimentation confirmation method in physics, and used physics to technology firstly. These features are the basic characteristics of the development of modern physics.Therefore, he is the first modern type of physics in ancient world and we call him the physics pioneer. Key words: Archimedes; Modern type; Physicist; ancient Gree
Dyschromatopsia: a comprehensive analysis of mechanisms and cutting-edge treatments for color vision deficiency
Color blindness is a retinal disease that mainly manifests as a color vision disorder, characterized by achromatopsia, red-green color blindness, and blue-yellow color blindness. With the development of technology and progress in theory, extensive research has been conducted on the genetic basis of color blindness, and various approaches have been explored for its treatment. This article aims to provide a comprehensive review of recent advances in understanding the pathological mechanism, clinical symptoms, and treatment options for color blindness. Additionally, we discuss the various treatment approaches that have been developed to address color blindness, including gene therapy, pharmacological interventions, and visual aids. Furthermore, we highlight the promising results from clinical trials of these treatments, as well as the ongoing challenges that must be addressed to achieve effective and long-lasting therapeutic outcomes. Overall, this review provides valuable insights into the current state of research on color blindness, with the intention of informing further investigation and development of effective treatments for this disease
OptimICE-RD: sacituzumab govitecan + pembrolizumab vs pembrolizumab (± capecitabine) for residual triple-negative breast cancer
Patients with early-stage triple-negative breast cancer (TNBC) with residual invasive disease after neoadjuvant therapy have a high risk of recurrence even with neoadjuvant and adjuvant treatment with pembrolizumab. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate with a topoisomerase I inhibitor payload, improved progression-free survival (PFS) and overall survival (OS) versus chemotherapy in patients with pre-treated metastatic TNBC. Moreover, preclinical data suggest that topoisomerase I inhibitors may enhance the effects of immune checkpoint inhibitors through activation of the cGAS-STING pathway. Here we describe the international randomized phase III AFT-65/ASCENT-05/OptimICE-RD trial, which evaluates the efficacy and safety of sacituzumab govitecan plus pembrolizumab versus treatment of physician's choice (pembrolizumab ± capecitabine) among patients with early-stage TNBC with residual invasive disease after neoadjuvant therapy.Clinical Trial Registration: NCT05633654 (ClinicalTrials.gov)Other Study ID Number(s): Gilead Study ID: GS-US-595-6184Registration date: 1 December 2022Study start date: 12 December 2022Recruitment status: Recruiting
Detecting Neutrinos from Supernova Bursts in PandaX-4T
Neutrinos from core-collapse supernovae are essential for the understanding
of neutrino physics and stellar evolution. The dual-phase xenon dark matter
detectors can provide a way to track explosions of galactic supernovae by
detecting neutrinos through coherent elastic neutrino-nucleus scatterings. In
this study, a variation of progenitor masses as well as explosion models are
assumed to predict the neutrino fluxes and spectra, which result in the number
of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc
over a 10-second duration with negligible backgrounds at PandaX-4T. Two
specialized triggering alarms for monitoring supernova burst neutrinos are
built. The efficiency of detecting supernova explosions at various distances in
the Milky Way is estimated. These alarms will be implemented in the real-time
supernova monitoring system at PandaX-4T in the near future, providing the
astronomical communities with supernova early warnings.Comment: 9 pages,6 figure
Search for light dark matter from atmosphere in PandaX-4T
We report a search for light dark matter produced through the cascading decay
of mesons, which are created as a result of inelastic collisions between
cosmic rays and Earth's atmosphere. We introduce a new and general framework,
publicly accessible, designed to address boosted dark matter specifically, with
which a full and dedicated simulation including both elastic and quasi-elastic
processes of Earth attenuation effect on the dark matter particles arriving at
the detector is performed. In the PandaX-4T commissioning data of 0.63
tonneyear exposure, no significant excess over background is observed.
The first constraints on the interaction between light dark matter generated in
the atmosphere and nucleus through a light scalar mediator are obtained. The
lowest excluded cross-section is set at for
dark matter mass of MeV and mediator mass of 300 MeV. The
lowest upper limit of to dark matter decay branching ratio is
FIGURE 5 in Two new species of the genus Sweltsa (Plecoptera: Chloroperlidae) from China
FIGURE 5. Sweltsa taibaishana sp. nov., male (holotype). a: terminalia, dorsal view. b: terminalia, lateral view. c: epiproct, dorsal view. d: epiproct, lateral view. e: terminalia, ventral view.Published as part of <i>Zhang, Yao, Wang, Bingli, Li, Wenliang & Li, Weihai, 2023, Two new species of the genus Sweltsa (Plecoptera: Chloroperlidae) from China, pp. 137-145 in Zootaxa 5360 (1)</i> on page 142, DOI: 10.11646/zootaxa.5360.1.8, <a href="http://zenodo.org/record/10146563">http://zenodo.org/record/10146563</a>
- …