115 research outputs found

    Robust fractional-order fast terminal sliding mode control of aerial manipulator derived from a mutable inertia parameters model

    Full text link
    The coupling disturbance between the manipulator and the unmanned aerial vehicle (UAV) deteriorates the control performance of system. To get high performance of the aerial manipulator, a robust fractional order fast terminal sliding mode control (FOFTSMC) strategy based on mutable inertia parameters is proposed in this paper. First, the dynamics of aerial manipulator with consideration of the coupling disturbance is derived by utilizing mutable inertia parameters. Then, based on the dynamic model, a robust FOFTSMC algorithm is designed to make the system fly steadily under coupling disturbance. Furthermore, stability analysis is conducted to prove the convergence of tracking errors. Finally, comparative simulation results are given to show the validity and superiority of the proposed scheme.Comment: This paper has been accepted by ICBDAI202

    NH3 sensor based on 3D hierarchical flower-shaped n-ZnO/p-NiO heterostructures yields outstanding sensing capabilities at ppb level

    Get PDF
    Hierarchical three-dimensional (3D) flower-like n-ZnO/p-NiO heterostructures with various ZnxNiy molar ratios (Zn5Ni1, Zn2Ni1, Zn1Ni1, Zn1Ni2 and Zn1Ni5) were synthesized by a facile hydrothermal method. Their crystal phase, surface morphology, elemental composition and chemical state were comprehensively investigated by XRD, SEM, EDS, TEM and XPS techniques. Gas sensing measurements were conducted on all the as-developed ZnxNiy-based sensors toward ammonia (NH3) detection under various working temperatures from 160 to 340 °C. In particular, the as-prepared Zn1Ni2 sensor exhibited superior NH3 sensing performance under optimum working temperature (280 °C) including high response (25 toward 100 ppm), fast response/recovery time (16 s/7 s), low detection limit (50 ppb), good selectivity and long-term stability. The enhanced NH3 sensing capabilities of Zn1Ni2 sensor could be attributed to both the specific hierarchical structure which facilitates the adsorption of NH3 molecules and produces much more contact sites, and the improved gas response characteristics of p-n heterojunctions. The obtained results clear demonstrated that the optimum n-ZnO/p-NiO heterostructure is indeed very promising sensing material toward NH3 detection for different applications

    Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response

    Get PDF
    Epitope-based vaccination might play an important role in the protective immunity against Japanese encephalitis virus (JEV) infection. The purpose of the study is to evaluate the immune characteristics of recombinant MVA carrying multi-epitope gene of JEV (rMVA-mep). The synthetic gene containing critical epitopes (B-cell, CTL and Th) of JEV was cloned into the eukaryotic expression vector pGEM-K1L, and the rMVA-mep was prepared. BALB/c mice were immunized with different dosages of purified rMVA-mep and the immune responses were determined in the form of protective response against JEV, antibodies titers (IgG1 and IgG2a), spleen cell lymphocyte proliferation, and the levels of interferon-γ and interleukin-4 cytokines. The results showed that live rMVA-mep elicited strongly immune responses in dose-dependent manner, and the highest level of immune responses was observed from the groups immunized with 107 TCID50 rMVA-mep among the experimental three concentrations. There were almost no difference of cytokines and neutralizing antibody titers among 107 TCID50 rMVA-mep, recombinant ED3 and inactivated JEV vaccine. It was noteworthy that rMVA-mep vaccination potentiates the Th1 and Th2-type immune responses in dose-dependent manner, and was sufficient to protect the mice survival against lethal JEV challenge. These findings demonstrated that rMVA-mep can produce adequate humoral and cellular immune responses, and protection in mice, which suggested that rMVA-mep might be an attractive candidate vaccine for preventing JEV infection

    Messenger RNA Sequencing and Pathway Analysis Provide Novel Insights Into the Susceptibility to Salmonella enteritidis Infection in Chickens

    Get PDF
    Salmonella enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Controlling poultry SE infection will have great practical significance for human public health, as poultry are considered to be important sources and carriers of the disease. In this study, the splenic transcriptomes of challenged-susceptible (S), challenged-resistant (R) and non-challenged (C) chicks (3-days old, specific-pathogen-free White Leghorn) were characterized in order to identify the immune-related gene markers and pathways. A total of 934 significant differentially expressed genes (DEGs) were identified in comparisons among the C, R and S birds. First reported here, the DEGs involved in the Forkhead box O (FoxO) signaling pathway, especially FoxO3, were identified as potential markers for host resistance to SE infection. The challenged-susceptible birds exhibited strong activation of the FoxO signaling pathway, which may be a major defect causing immune cell apoptosis as part of SE-induced pathology; these S birds also showed weak activation of mitogen-activated protein kinase (MAPK)-related genes, contrasting with strong splenic activation in the R birds. Interestingly, suppression of several pathways in the immune response against Salmonella, including cytokine-cytokine receptor interaction and Jak-STAT, was only found in S birds and there was evidence of cross-talk among these pathways, perhaps contributing to susceptibility to Salmonella infection. These findings will help facilitate understanding resistance and susceptibility to SE infection in the earliest phases of the host immune response through Salmonella-induced pathways, provide new approaches to develop strategies for SE prevention and treatment, and may enhance innate resistance by genetic selection in animals

    Abscopal effect triggered by radiation sequential mono-immunotherapy resulted in a complete remission of PMMR sigmoid colon cancer

    Get PDF
    BackgroundRadiation therapy combined with immune checkpoint inhibitors (ICIs) has recently turned into an appealing and promising approach to enhance the anti-tumor immunity and efficacy of immunological drugs in many tumors. Abscopal effect induced by radiation is a phenomenon that often leads to an efficient immunity response. In this study, we investigated whether the combination of the immunogenic effects derived from radiotherapy sequential ICIs-based therapy could increase the incidence of abscopal effects, and improve the survival rates.Case presentationWe described a clinical case regarding a 35-year-old male patient who was admitted to our hospital with a diagnosis of adenocarcinoma of the sigmoid colon and synchronous multiple liver metastases following a surgical resection. The molecular pathological examination showed immune-desert phenotype and proficient mismatch repair (pMMR). The patient was treated with adjuvant chemotherapy after surgery, however, after 7 months, multiple metastasis in the pelvic lymph nodes were diagnosed. Unfortunately, the tumor progressed despite multiple cycles of chemotherapy combined with cetuximab or bevacizumab. Within the follow-up treatment, the patient was administered with only 50Gy/25F of radiation dose to treat the anastomotic lesions. Subsequently, mono-sindilizumab was used as systemic therapy, leading to a rapid reduction of all pelvic lesions and complete clinical remission. So far, the patient survived for more than 20 months under continuous mono-sindilizumab treatment and is still in complete remission.ConclusionA localized radiotherapy combined with a sindilizumab-based systemic therapy may overcome the immune resistance of pMMR metastatic colorectal cancer (mCRC), thus obtaining greater efficacy of the therapy. Its mechanism may be related to the abscopal effect obtained by the synergistic use of radiation and sindilizumab, which should be further investigated in the future

    Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Get PDF
    Non-target-site resistance (NTSR) to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol.) population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length) that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK), water-only control (WCK), and mesosulfuron-methyl treatment (T) of R and susceptible (S). Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR) validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450) genes, two glutathione S-transferase (GST) genes, two glucosyltransferase (GT) genes, two ATP-binding cassette (ABC) transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence they deserve further functional study. This is the first large-scale transcriptome-sequencing study to identify NTSR genes in A. aequalis that uses the Illumina platform. This work demonstrates that NTSR is likely driven by the differences in the expression patterns of a set of genes. The assembled transcriptome data presented here provide a valuable resource for A. aequalis biology, and should facilitate the study of herbicide resistance at the molecular level in this and other weed species

    Origin of heavy rare earth mineralization in South China

    Get PDF
    Heavy rare earth elements (HREE) are dominantly mined from the weathering crusts of granites in South China. Although weathering processes occur globally, no economic HREE resources of this type have yet been found outside China. Here, we report the occurrence of unidentified REE minerals in the granites from South Chinese deposits. They contain high levels of both HREE and light REE, but are strongly depleted in Ce, implying high oxidation state. These REE minerals show higher initial Nd isotope than primary REE-rich minerals (eNd(t) = 0.9 +/- 0.8 versus -11.5 +/- 0.5). The mineralized weathering crusts inherited REE signature of the granites, but show more Ce depletion and more overall concentration of the REE. We propose, therefore, that highly oxidized, REE-rich fluids, derived from external, isotopically depleted sources, metasomatized the granites, which resulted in Ce depletion as Ce4+ and enrichment of the remaining REE, especially the HREE, contributing to formation of a globally important REE resource.Chinese National Science Foundation [41573033, 41222022]; European Union's Horizon [689909]; Czechic Project CEITEC [LQ1601]SCI(E)ARTICLE
    • …
    corecore