239 research outputs found

    Construction of trivariate compactly supported biorthogonal box spline wavelets

    Get PDF
    AbstractWe give a formula for the duals of the masks associated with trivariate box spline functions. We show how to construct trivariate nonseparable compactly supported biorthogonal wavelets associated with box spline functions. The biorthogonal wavelets may have arbitrarily high regularities

    TGSum: Build Tweet Guided Multi-Document Summarization Dataset

    Full text link
    The development of summarization research has been significantly hampered by the costly acquisition of reference summaries. This paper proposes an effective way to automatically collect large scales of news-related multi-document summaries with reference to social media's reactions. We utilize two types of social labels in tweets, i.e., hashtags and hyper-links. Hashtags are used to cluster documents into different topic sets. Also, a tweet with a hyper-link often highlights certain key points of the corresponding document. We synthesize a linked document cluster to form a reference summary which can cover most key points. To this aim, we adopt the ROUGE metrics to measure the coverage ratio, and develop an Integer Linear Programming solution to discover the sentence set reaching the upper bound of ROUGE. Since we allow summary sentences to be selected from both documents and high-quality tweets, the generated reference summaries could be abstractive. Both informativeness and readability of the collected summaries are verified by manual judgment. In addition, we train a Support Vector Regression summarizer on DUC generic multi-document summarization benchmarks. With the collected data as extra training resource, the performance of the summarizer improves a lot on all the test sets. We release this dataset for further research.Comment: 7 pages, 1 figure in AAAI 201

    Stochastic Resolution of Identity for Real-Time Second-Order Green's Function: Ionization Potential and Quasi-Particle Spectrum.

    Get PDF
    We develop a stochastic resolution of identity approach to the real-time second-order Green's function (real-time sRI-GF2) theory, extending our recent work for imaginary-time Matsubara Green's function [ Takeshita et al. J. Chem. Phys. 2019 , 151 , 044114 ]. The approach provides a framework to obtain the quasi-particle spectra across a wide range of frequencies and predicts ionization potentials and electron affinities. To assess the accuracy of the real-time sRI-GF2, we study a series of molecules and compare our results to experiments as well as to a many-body perturbation approach based on the GW approximation, where we find that the real-time sRI-GF2 is as accurate as self-consistent GW. The stochastic formulation reduces the formal computatinal scaling from O(Ne5) down to O(Ne3) where Ne is the number of electrons. This is illustrated for a chain of hydrogen dimers, where we observe a slightly lower than cubic scaling for systems containing up to Ne ā‰ˆ 1000 electrons

    Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have shown that microRNA precursors (pre-miRNAs) have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA) and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear.</p> <p>Results</p> <p>We investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability.</p> <p>Conclusions</p> <p>We proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were also detected in conserved pre-miRNAs.</p

    Modelling the effectiveness of oil lubrication in reducing both friction and wear in a fretting contact

    Get PDF
    Lubrication is often employed in fretting contacts to reduce wear and stresses associated with high friction. Owing to the very small displacements associated with fretting, penetration of lubricating oils into the contact may not be effective. The efficacy of the penetration of the lubricant into the contact is very difficult to observe experimentally, and accordingly, this paper presents a numerical simulation of a lubricated fretting contact using a Coupledā€“Eulerianā€“Lagrangian (CEL) finite element method. Meso-scale CEL finite element models are developed to simulate the cylinderā€“onā€“flat arrangement used experimentally at the University of Nottingham in which the roughness of contact surfaces is characterized as fractal geometry by the Weierstrass-Mandelbrot (W-M) function. The fluidā€“solid and solidā€“solid contact in the lubricated fretting contact are simulated, and from these, wear and friction coefficients are determined. The effects of contact geometry on lubricated fretting contacts and lubricant on fretting wear are modelled and compared with experimental observations. Results indicate that oil lubrication reduces fretting wear and friction effectively in the lessā€“conforming contacts but has little effect in the moreā€“conforming contacts

    In silico genetic robustness analysis of microRNA secondary structures: potential evidence of congruent evolution in microRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Robustness is a fundamental property of biological systems and is defined as the ability to maintain stable functioning in the face of various perturbations. Understanding how robustness has evolved has become one of the most attractive areas of research for evolutionary biologists, as it is still unclear whether genetic robustness evolved as a direct consequence of natural selection, as an intrinsic property of adaptations, or as congruent correlate of environment robustness. Recent studies have demonstrated that the stem-loop structures of microRNA (miRNA) are tolerant to some structural changes and show thermodynamic stability. We therefore hypothesize that genetic robustness may evolve as a correlated side effect of the evolution for environmental robustness.</p> <p>Results</p> <p>We examine the robustness of 1,082 miRNA genes covering six species. Our data suggest the stem-loop structures of miRNA precursors exhibit a significantly higher level of genetic robustness, which goes beyond the intrinsic robustness of the stem-loop structure and is not a byproduct of the base composition bias. Furthermore, we demonstrate that the phenotype of miRNA buffers against genetic perturbations, and at the same time is also insensitive to environmental perturbations.</p> <p>Conclusion</p> <p>The results suggest that the increased robustness of miRNA stem-loops may result from congruent evolution for environment robustness. Potential applications of our findings are also discussed.</p

    READS-V: Real-time Automated Detection of Epileptic Seizures from Surveillance Videos via Skeleton-based Spatiotemporal ViG

    Full text link
    An accurate and efficient epileptic seizure onset detection system can significantly benefit patients. Traditional diagnostic methods, primarily relying on electroencephalograms (EEGs), often result in cumbersome and non-portable solutions, making continuous patient monitoring challenging. The video-based seizure detection system is expected to free patients from the constraints of scalp or implanted EEG devices and enable remote monitoring in residential settings. Previous video-based methods neither enable all-day monitoring nor provide short detection latency due to insufficient resources and ineffective patient action recognition techniques. Additionally, skeleton-based action recognition approaches remain limitations in identifying subtle seizure-related actions. To address these challenges, we propose a novel skeleton-based spatiotemporal vision graph neural network (STViG) for efficient, accurate, and timely REal-time Automated Detection of epileptic Seizures from surveillance Videos (READS-V). Our experimental results indicate STViG outperforms previous state-of-the-art action recognition models on our collected patients' video data with higher accuracy (5.9% error) and lower FLOPs (0.4G). Furthermore, by integrating a decision-making rule that combines output probabilities and an accumulative function, our READS-V system achieves a 5.1 s EEG onset detection latency, a 13.1 s advance in clinical onset detection, and zero false detection rate.Comment: 12 pages, 8 figures, 8 table

    Effectiveness of the River Chief System in China: A Study Based on Grassroots River Chiefā€™s Behavior

    Get PDF
    The River Chief System is an administrative model of water environment governance currently adopted in China. Under this system, the chief CPC and government leaders at various levels serve as ā€œriver chiefsā€ and are responsible for organizing and directing the management and protection of the rivers and lakes within their remit. This paper tries to reveal the actual effectiveness of the River Chief System based on the behaviors of grassroots river chiefs (GRCs). First-hand data about GRCs is obtained through a questionnaire survey. Whether the water environment governance target is achieved and the water quality change of the river sections in the charge of GRCs is quantitatively assessed It has been found that, except for implementing ā€œone policy for one riverā€ and making river patrols, the behaviors of GRCs have no positive effect on river pollution prevention and control, implying the ineffectiveness of the River Chief System. The framework design of the River Chief System should be optimized, and a system with professionals to support GRCs in performing their duties should be established. Moreover, the tendency to use environmental regulation as a mandatory policy tool should be weakened. These measures are of great practical significance to the implementation of the green development concept and the furthering of the River Chief System overall

    Assessment of topsoil removal as an effective method for vegetation restoration in farmed peatlands

    Get PDF
    Peatland areas have dramatically declined in the past century because of the demand for agriculture. Therefore, it is necessary to develop suitable techniques to preserve these unique ecosystems. We studied the effects of topsoil removal on vegetation restoration in silt- and sand-amended peatlands in Changbai Mountain, China. We observed that topsoil removal effectively improved soil nutrient levels and water holding capacity in the silt-amended peatland but exhibited no significant effect on the sand-amended peatland. Topsoil removal decreased the species richness in both silt- and sand-amended peatlands but did not have any effect on the plant cover and biomass in the sand-amended peatland. The coverage, density, and aboveground biomass of dominant species, namely, Carex schmidtii, significantly increased after topsoil removal in the silt-amended peatland. The target Carex species was absent from the sand-amended peatland. Redundancy analysis identified that the soil water content, soil organic carbon, total nitrogen, and total phosphorus explained the most variance in vegetation composition in the silt-amended peatland. Our results demonstrated that topsoil removal is necessary to reduce the weed seeds and promote the recolonization of peatland species, particularly the tussock-forming Carex, in the silt-amended peatland during restoration
    • ā€¦
    corecore