259 research outputs found

    μ3-Bromido-oxidotri-μ3-sulfido-tris­(triphenyl­phosphane-κP)­tri­copper(I)­tungsten(VI)

    Get PDF
    The title complex, [Cu3WBrOS3(C18H15P)3], a neutral heavily distorted cubane-like W/S/Cu cluster, was self-assembled from ammonium trithio­tungstate(VI), cuprous bromide and triphenyl­phosphane in N,N-dimethyl­formamide. The average Cu—Br, Cu—S and W—μ3-S bond lengths are 2.731 (2), 2.318 (2) and 2.256 (2) Å, respectively, in the distorted cubane-like skeleton. The W atom exhibits tetra­hedral geometry, formed by one terminal O atom and three μ3-S atoms; the W—O bond length is 1.728 (6) Å. Each Cu atom is coordinated by one P atom from a triphenyl­phosphane ligand, and two μ3-S and one μ3-Br atoms, forming a distorted tetra­hedral coordination geometry

    Distribution and metabolism of ascorbic acid in pear fruits (Pyrus pyrifolia Nakai cv. Aikansui)

    Get PDF
    Ascorbate accumulation levels, distribution and key enzyme activities involved in synthesizing via Smirnoff-Wheeler pathway and recycling in different pear fruit tissues during development were studied. Results show that the ascorbate contents increased with the fruit development, and reached the highest titers in 30 days after anthesis (DAA), then decreased and maintained a level. The higher contents of ascorbate in the peel of pear fruit were observed, which results from a combination of higher activities of L-galactose dehydrogenase (GalDH) and L-galactono-1,4-lactone (GalLDH) involving ascorbate biosynthesis and higher dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities used to recycle ascorbate. Exogenous feeding of ascorbate synthesis precursors demonstrated that the peel had stronger capability of de novo ascorbate biosynthesis via Smirnoff-Wheeler pathway and uronic acid pathway whereas the flesh and core had lower capability for ascorbate synthesis. These results suggest that the pear fruit is able to cause de novo ascorbate biosynthesis and the peel had higher capability for ascorbate biosynthesis than the flesh and core.Keywords: Pyrus pyrifolia, ascorbate, biosynthesisAfrican Journal of Biotechnology Vol. 12(16), pp. 1952-196

    Modeling the land surface heat exchange process with the aid of moderate resolution imaging spectroradiometer images

    Get PDF
    Most ecosystems and crops experience water stress in arid and semiarid areas of the Inner Mongolia grassland, Northern China. Yet the lack of long-term in situ monitoring data hinders the managerial capacity of changing water vapor environment, which is tied with sustaining the grassland in the Inner Mongolia. Environmental remote sensing monitoring and modeling may provide synergistic means of observing changes in thermodynamic balance during drought onset at the grassland surface, providing reliable projections accounting for variations and correlations of water vapor and heat fluxes. It is the aim of this paper to present a series of estimates of latent heat, sensible heat, and net radiation using an innovative first-principle, physics-based model (GEOMOD: GEO-model estimated the land surface heat with MODis data) with the aid of integrated satellite remote sensing and in situ eddy covariance data. Based on the energy balance principle and aerodynamics diffusion theory, the GEOMOD model is featured with MODIS (Moderate Resolution Imaging Spectroradiometer) data with 250 m spatial resolution to collectively reflect the spatial heterogeneity of surface properties, supplement missing data with the neighborhood values across both spatial and temporal domains, estimate the surface roughness height and zero-plane displacement with dynamic look-up table, and implement a fast iterative algorithm to calculate sensible heat. Its analytical framework is designed against overreliance on local micro-meteorological parameters. Practical implementation was assessed in the study area, the Xilin Gol River Basin, a typical grassland environment, Northern China. With 179 days of MODIS data in support of modeling, coincident ground-based observations between 2000 and 2006 were selected for model calibration. The findings indicate that GEOMOD performs reasonably well in modeling the land surface heat exchange process, as demonstrated by a case study of Inner Mongolia

    Hydrological Response of Alpine Wetlands to ClimateWarming in the Eastern Tibetan Plateau

    Get PDF
    Alpine wetlands in the Tibetan Plateau (TP) play a crucial role in the regional hydrological cycle due to their strong influence on surface ecohydrological processes; therefore, understanding how TP wetlands respond to climate change is essential for projecting their future condition and potential vulnerability. We investigated the hydrological responses of a large TP wetland complex to recent climate change, by combining multiple satellite observations and in-situ hydro-meteorological records. We found different responses of runoff production to regional warming trends among three basins with similar climate, topography and vegetation cover but different wetland proportions. The basin with larger wetland proportion (40.1%) had a lower mean runoff coefficient (0.173 ± 0.006), and also showed increasingly lower runoff level (−3.9% year−1, p = 0.002) than the two adjacent basins. The satellite-based observations showed an increasing trend of annual non-frozen period, especially in the wetland-dominated region (2.64 day·year−1, p \u3c 0.10), and a strong extension of vegetation growing-season (0.26–0.41 day·year−1, p \u3c 0.10). Relatively strong increasing trends in evapotranspiration (ET) (~1.00 mm·year−1, p \u3c 0.01) and the vertical temperature gradient above ground surface (0.043 °C·year−1, p \u3c 0.05) in wetland-dominant areas were documented from satellite-based ET observations and weather station records. These results indicate recent surface drying and runoff reduction of alpine wetlands, and their potential vulnerability to degradation with continued climate warming

    Climatic Controls on Spring Onset of the Tibetan Plateau Grasslands from 1982 to 2008

    Get PDF
    Understanding environmental controls on vegetation spring onset (SO) in the Tibetan Plateau (TP) is crucial to diagnosing regional ecosystem responses to climate change. We investigated environmental controls on the SO of the TP grasslands using satellite vegetation index (VI) from the 3rd Global Inventory Modeling and Mapping Studies (GIMMS3g) product, with in situ air temperature (Ta) and precipitation (Prcp) measurement records from 1982 to 2008. The SO was determined using a dynamic threshold method based on a 25% threshold of seasonal VI amplitude. We find that SO shows overall close associations with spring Ta, but is also subject to regulation from spring precipitation. In relatively dry but increasingly wetting (0.50 mm·year−1, p \u3c 0.10) grasslands (mean spring Prcp = 22.8 mm; Ta = −3.27 °C), more precipitation tends to advance SO (−0.146 day·mm−1, p = 0.150) before the mid-1990s, but delays SO (0.110 day·mm−1, p = 0.108) over the latter record attributed to lower solar radiation and cooler temperatures associated with Prcp increases in recent years. In contrast, in relatively humid TP grasslands (73.0 mm; −3.51 °C), more precipitation delays SO (0.036 day·mm−1, p = 0.165) despite regional warming (0.045 °C·year−1, p \u3c 0.05); the SO also shows a delaying response to a standardized drought index (mean R = 0.266), indicating a low energy constraint to vegetation onset. Our results highlight the importance of surface moisture status in regulating the phenological response of alpine grasslands to climate warming

    Liposclerosing myxofibrous tumor of the distal femur: A case report

    Get PDF
    IntroductionLiposclerosing myxofibrous tumor (LSMFT) is a rare benign fibro-osseous tumor that most frequently occurs in the proximal femur. The reported literature shows that the proximal femur, ilium, tibia, humerus, rib, and skull have occurred, but so far, the female distal femur has not been characterized in detail. This, we think, is the first single comprehensive case report of the female distal femur. To prevent misdiagnosis and overtreatment of this illness, it is critical for us to continue strengthening our knowledge of it and to add it to the differential diagnosis of the space-occupying lesion of the female distal femur.Case summaryTwo months ago, a 55-year-old female patient was found to have a space-occupying lesion of the left distal femur and the pain symptom was aggravated. She underwent thorough curettage and bone grafting without additional treatment to relieve the current symptoms and determine the nature of the lesion in our hospital. The intraoperative specimens were submitted to the pathology laboratory for analysis, and the result was reported as LSMFT. And six months after the operation, the patient returned to our hospital for another x-ray examination and we found that she had recovered well without any signs of recurrence. The patient self-reported that she had now resumed her daily life without any uncomfortable symptoms.ConclusionThe incidence of LSMFT itself is relatively low, and the occurrence of the distal femur is even rarer. However, it is recommended to add LSMFT into the differential diagnosis of the occupying lesions of the distal femur. Once the diagnosis is made, thorough curettage and bone grafting without additional special treatment can achieve better postoperative outcomes. The patient gave her agreement after learning that information about the case will be submitted for publication

    Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring

    Get PDF
    With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion Approach (STDFA) was used to reconstruct the time series high spatiotemporal resolution data from the Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field-of-view camera (GF-1 WFV), Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Then, the reconstructed time series were applied to extract crop phenology using a Hybrid Piecewise Logistic Model (HPLM). In addition, the onset date of greenness increase (OGI) and greenness decrease (OGD) were also calculated using the simulated phenology. Finally, crop types were mapped using the phenology information. The results show that the reconstructed high spatiotemporal data had a high quality with a proportion of good observations (PGQ) higher than 0.95 and the HPLM approach can simulate time series Normalized Different Vegetation Index (NDVI) very well with R2 ranging from 0.635 to 0.952 in Luntai and 0.719 to 0.991 in Bole, respectively. The reconstructed high spatiotemporal data were able to extract crop phenology in single crop fields, which provided a very detailed pattern relative to that from time series MODIS data. Moreover, the crop types can be classified using the reconstructed time series high spatiotemporal data with overall accuracy equal to 0.91 in Luntai and 0.95 in Bole, which is 0.028 and 0.046 higher than those obtained by using multi-temporal Landsat NDVI data
    corecore