10 research outputs found
Production of Trihalomethanes, Haloacetaldehydes and Haloacetonitriles during Chlorination of Microcystin-LR and Impacts of Pre-Oxidation on Their Formation
Microcystins (MCs) in drinking water have gained much attention due to their adverse health effects. However, little is known about the impact of pre-oxidation in the formation of disinfection by-products (DBPs) during the downstream chlorination of MCs. The present study examined the formation of both carbonaceous and nitrogenous DBPs from chlorination of MC-LR (the most abundant MC species) and evaluated the impact of permanganate (PM), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) pre-oxidation on the DBP formation in chlorination. Higher yields of chloroform (CF) (maximum 43.0%) were observed from chlorination of MC-LR than free amino acids which are included in MC-LR structure. Chloral hydrate (CH) and dichloroacetonitrile (DCAN) were also produced from the chlorination of MC-LR, and the latter one was formed probably due to the chlorination of peptide bonds. A high pH favored the production of CF and CH, but inhibited the formation of DCAN. In the presence of bromide, bromo-DBPs could be produced to pose a threat. For example, 0.58 μg/L of tribromoacetaldehyde was produced from the chlorination of MC-LR at Br−= 200 μg/L. PM and ClO2pre-oxidation could both reduce the DBP formation from MC-LR. In contrast, H2O2appeared not to significantly control the DBP formation
An animal model of EPO-induced abdominal aortic aneurysm in WT and Apoe−/− mice
Summary: Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disease, but the underlying mechanisms remain obscure. Here, we provide a protocol using erythropoietin (EPO) to induce the formation of AAA in both wild-type (WT) and apolipoprotein E (Apoe−/−) mice. We describe the dose, manner, and timing of EPO administration. We also detail mice dissection, aorta isolation, and histological analysis. The animal model of EPO-induced AAA provides a useful tool for exploring the mechanism of AAA in experimental studies.For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics
TRIM31 Deficiency Is Associated with Impaired Glucose Metabolism and Disrupted Gut Microbiota in Mice
Tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase of the tripartite motif family, plays an important role in the innate immune response. It can reduce the activity of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. However, little information is about glucose metabolic health of TRIM31-deficient mice, and investigations about gut microbiota in TRIM31-deficient mice is limited. Thus, we aimed to compare glucose metabolic parameters, gut microbiota composition and inflammatory cytokine levels between TRIM31−/− and wild-type (WT) mice, and further investigate whether or not certain gut microbiota taxon correlates with specific metabolic parameters and inflammation cytokines in TRIM31-deficient mice. TRIM31−/− mice showed glucose intolerance and insulin resistance, with a significant difference in gut microbiota composition, characterized by increased abundance of Prevotellaceae and Veillonellaceae. TRIM31−/− mice with impaired glucose metabolism was accompanied by elevated serum tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) concentrations, as well as upregulated caecal TNF-α, IL-1β, caspase-1, and NLRP3 expressions. Furthermore, elevated p-IRS-1/IRS-1 protein expression, and decreased Akt Thr308 phosphorylation were observed in TRIM31−/− mice. Prevotellaceae abundance was positively associated with caecal IL-1β mRNA expression, and Veillonellaceae was associated with higher TNF-α mRNA expression and serum insulin concentration. In conclusion, our study is novel in showing that TRIM31 deficiency is associated with impaired glucose metabolism and disrupted gut microbiota in mice. This study contributes to the theoretical foundation on the potential relationship between TRIM31 deficiency and the development of abnormal glucose metabolism
NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice
Abstract Previous studies suggested a beneficial effect of natriuretic peptides in animal models of cardiovascular disease, but the role of natriuretic peptide receptor C (NPRC) in the pathogenesis of atherosclerosis (AS) remains unknown. This study was designed to test the hypothesis that NPRC may promote AS lesion formation and instability by enhancing oxidative stress, inflammation, and apoptosis via protein kinase A (PKA) signaling. ApoE−/− mice were fed chow or Western diet for 12 weeks and NPRC expression was significantly increased in the aortic tissues of Western diet-fed mice. Systemic NPRC knockout mice were crossed with ApoE−/− mice to generate ApoE−/−NPRC−/− mice, and NPRC deletion resulted in a significant decrease in the size and instability of aortic atherosclerotic lesions in ApoE−/−NPRC−/− versus ApoE−/− mice. In addition, endothelial cell-specific NPRC knockout attenuated atherosclerotic lesions in mice. In contrast, endothelial cell overexpression of NPRC aggravated the size and instability of atherosclerotic aortic lesions in mice. Experiments in vitro showed that NPRC knockdown in human aortic endothelial cells (HAECs) inhibited ROS production, pro-inflammatory cytokine expression and endothelial cell apoptosis, and increased eNOS expression. Furthermore, NPRC knockdown in HAECs suppressed macrophage migration, cytokine expression, and phagocytosis via its effects on endothelial cells. On the contrary, NPRC overexpression in endothelial cells resulted in opposite effects. Mechanistically, the anti-inflammation and anti-atherosclerosis effects of NPRC deletion involved activation of cAMP/PKA pathway, leading to downstream upregulated AKT1 pathway and downregulated NF-κB pathway. In conclusion, NPRC deletion reduced the size and instability of atherosclerotic lesions in ApoE−/− mice via attenuating inflammation and endothelial cell apoptosis and increasing eNOS expression by modulating cAMP/PKA-AKT1 and NF-κB pathways. Thus, targeting NPRC may provide a promising approach to the prevention and treatment of atherosclerosis
Mirabegron displays anticancer effects by globally browning adipose tissues
Abstract Metabolic reprogramming in malignant cells is a hallmark of cancer that relies on augmented glycolytic metabolism to support their growth, invasion, and metastasis. However, the impact of global adipose metabolism on tumor growth and the drug development by targeting adipose metabolism remain largely unexplored. Here we show that a therapeutic paradigm of drugs is effective for treating various cancer types by browning adipose tissues. Mirabegron, a clinically available drug for overactive bladders, displays potent anticancer effects in various animal cancer models, including untreatable cancers such as pancreatic ductal adenocarcinoma and hepatocellular carcinoma, via the browning of adipose tissues. Genetic deletion of the uncoupling protein 1, a key thermogenic protein in adipose tissues, ablates the anticancer effect. Similarly, the removal of brown adipose tissue, which is responsible for non-shivering thermogenesis, attenuates the anticancer activity of mirabegron. These findings demonstrate that mirabegron represents a paradigm of anticancer drugs with a distinct mechanism for the effective treatment of multiple cancers
Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions.
Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature-dependent browning of visceral fat caused decreased adipose weight, total body weight, and body mass index, despite increased food intake. In high-fat diet-fed mice, low temperature exposure improved browning of visceral fat, global metabolism via nonshivering thermogenesis, insulin sensitivity, and hepatic steatosis. Genome-wide expression profiling showed upregulation of WAT browning-related genes including Cidea and Dio2. Conversely, Prdm16 was unchanged in healthy mice or was downregulated in obese mice. Surgical removal of visceral fat and genetic knockdown of UCP1 in epididymal fat largely ablated low temperature-increased global thermogenesis and resulted in the death of most mice. Thus, browning of visceral fat may be a compensatory heating mechanism that could provide a novel therapeutic strategy for treating visceral fat-associated obesity and diabetes