28 research outputs found

    Modeling Dynamic Trust and Risk Evaluation Based on High-Order Moments

    Get PDF

    Active and intelligent control onto thermal behaviors of a motorized spindle unit

    Get PDF
    Motorized spindle unit is the core component of a precision CNC machine tool. Its thermal errors perform generally serious disturbance onto the accuracy and accuracy stability of precision machining. Traditionally, the effectiveness of the compensation method for spindle thermal errors is restricted by machine freedom degrees. For this problem, this paper presents an active, differentiated, and intelligent control method onto spindle thermal behaviors, to realize comprehensive and accurate suppressions onto spindle thermal errors. Firstly, the mechanism of spindle heat generation/dissipation-structural temperature-thermal deformation error is analyzed. This modeling conveys that the constantly least spindle thermal errors can be realized by differentiated and active controls onto its structural thermal behaviors. Based on this principle, besides, the active control method is developed by a combination of extreme learning machine (ELM) and genetic algorithm (GA). The aim is to realize the general applicability of this active and intelligent control algorithm, for the spindle time-varying thermal behaviors. Consequently, the contrasting experiments clarify that the proposed active and intelligent control method can suppress accurately and synchronously all kinds of spindle thermal errors. It is significantly beneficial for the improvements of the accuracy and accuracy stability of motorized spindle units

    A differentiated multi-loops bath recirculation system for precision machine tools

    Get PDF
    Traditional bath recirculation cooler for precision machine tools always has the uniform and open-loop cooling strategy onto different heat generating parts. This causes redundant generated heat being transferred into the machine structure, and results in unsatisfactory thermal errors of precision machine tools. For the solution of this problem, this paper presents the differentiated multi-loops bath recirculation system. The developed system can accomplish differentiated and close-loop cooling strategies onto machine heat generating parts during its operation. Specially, in order to illustrate the advantages of this system, constant supply cooling powers strategy is presented with its applications onto a certain type of built-in motorized spindle. Consequently, advantages of the proposed strategy based on the differentiated multi-loops bath recirculation system are verified experimentally in the environment within consistent temperature (TR = 20 ± 0.3°C). Compared with room temperature tracing strategy based on the traditional bath recirculation cooler, the constant supply cooling powers strategy is verified to be advantageous in spindle temperature stabilization and thermal errors decrease

    DLALoc: Deep-Learning Accelerated Visual Localization Based on Mesh Representation

    No full text
    Visual localization, i.e., the camera pose localization within a known three-dimensional (3D) model, is a basic component for numerous applications such as autonomous driving cars and augmented reality systems. The most widely used methods from the literature are based on local feature matching between a query image that needs to be localized and database images with known camera poses and local features. However, this method still struggles with different illumination conditions and seasonal changes. Additionally, the scene is normally presented by a sparse structure-from-motion point cloud that has corresponding local features to match. This scene representation depends heavily on different local feature types, and changing the different local feature types requires an expensive feature-matching step to generate the 3D model. Moreover, the state-of-the-art matching strategies are too resource intensive for some real-time applications. Therefore, in this paper, we introduce a novel framework called deep-learning accelerated visual localization (DLALoc) based on mesh representation. In detail, we employ a dense 3D model, i.e., mesh, to represent a scene that can provide more robust 2D-3D matches than 3D point clouds and database images. We can obtain their corresponding 3D points from the depth map rendered from the mesh. Under this scene representation, we use a pretrained multilayer perceptron combined with homotopy continuation to calculate the relative pose of the query and database images. We also use the scale consistency of 2D-3D matches to perform the efficient random sample consensus to find the best 2D inlier set for the subsequential perspective-n-point localization step. Furthermore, we evaluate the proposed visual localization pipeline experimentally on Aachen DayNight v1.1 and RobotCar Seasons datasets. The results show that the proposed approach can achieve state-of-the-art accuracy and shorten the localization time about five times

    BeTrust: A Dynamic Trust Model Based on Bayesian Inference and Tsallis Entropy for Medical Sensor Networks

    Get PDF
    With the rapid development and application of medical sensor networks, the security has become a big challenge to be resolved. Trust mechanism as a method of “soft security” has been proposed to guarantee the network security. Trust models to compute the trustworthiness of single node and each path are constructed, respectively, in this paper. For the trust relationship between nodes, trust value in every interval is quantified based on Bayesian inference. A node estimates the parameters of prior distribution by using the collected recommendation information and obtains the posterior distribution combined with direct interactions. Further, the weights of trust values are allocated through using the ordered weighted vector twice and overall trust degree is represented. With the associated properties of Tsallis entropy, the definition of path Tsallis entropy is put forward, which can comprehensively measure the uncertainty of each path. Then a method to calculate the credibility of each path is derived. The simulation results show that the proposed models can correctly reflect the dynamic of node behavior, quickly identify the malicious attacks, and effectively avoid such path containing low-trust nodes so as to enhance the robustness

    Power matching based dissipation strategy onto spindle heat generations

    Get PDF
    To overcome the imbalance between spindle heat generation and dissipation caused by existed spindle cooling strategies, this paper develops a power matching based cooling strategy for motorized spindle unit. Firstly, heat generation, conduction and dissipation are considered for the modeling of spindle structural heat exchange. This modeling methodology conveys that an operating motorized spindle unit will have satisfactory thermal behaviors only if the supply dissipation powers from recirculation coolants are dynamically and respectively equal to their corresponding heat generation powers (mainly from spindle bearings and motor). Based on this principle, the power matching between spindle heat generations and dissipations is realized by the real-time power estimations of spindle heat sources and the modified constant supply cooling powers strategy. It can be ultimately verified by experiments that the power matching based dissipation strategy is more advantageous than existed spindle cooling strategies in dissipation of spindle heat generations and decrease of thermal errors

    Secure and Efficient Attribute-Based Access Control for Multiauthority Cloud Storage

    No full text

    Fuzzy c

    No full text
    Because of its positive effects on dealing with the curse of dimensionality in big data, random projection for dimensionality reduction has become a popular method recently. In this paper, an academic analysis of influences of random projection on the variability of data set and the dependence of dimensions has been proposed. Together with the theoretical analysis, a new fuzzy c-means (FCM) clustering algorithm with random projection has been presented. Empirical results verify that the new algorithm not only preserves the accuracy of original FCM clustering, but also is more efficient than original clustering and clustering with singular value decomposition. At the same time, a new cluster ensemble approach based on FCM clustering with random projection is also proposed. The new aggregation method can efficiently compute the spectral embedding of data with cluster centers based representation which scales linearly with data size. Experimental results reveal the efficiency, effectiveness, and robustness of our algorithm compared to the state-of-the-art methods
    corecore