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Abstract: To overcome the imbalance between spindle heat generation and dissipation caused 11 

by existed spindle cooling strategies, this paper develops a power matching based cooling 12 

strategy for motorized spindle unit. Firstly, heat generation, conduction and dissipation are 13 

considered for the modeling of spindle structural heat exchange. This modeling methodology 14 

conveys that an operating motorized spindle unit will have satisfactory thermal behaviors only 15 

if the supply dissipation powers from recirculation coolants are dynamically and respectively 16 

equal to their corresponding heat generation powers (mainly from spindle bearings and motor). 17 

Based on this principle, the power matching between spindle heat generations and dissipations 18 

is realized by the real-time power estimations of spindle heat sources and the modified constant 19 

supply cooling powers strategy. It can be ultimately verified by experiments that the power 20 

matching based dissipation strategy is more advantageous than existed spindle cooling 21 

strategies in dissipation of spindle heat generations and decrease of thermal errors. 22 
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1 Introduction 1 

Motorized spindle unit, being the crucial component of precision machine tools, can realize 2 

various machining types such as drilling, milling, grinding and so on. Generally, the motorized 3 

spindle unit has a compact structure combining its built-in motor and high speed bearings. This 4 

structure provides motorized spindle unit with not only high speed, precision, and rigidity, but 5 

also some thermal disturbances on precision machining accuracy and accuracy stability 
[1]

. As 6 

illustrated in Fig. 1, there are mainly the motor and bearing power losses in the energy 7 

conversion of a motorized spindle unit operating in a constant temperature (20℃) workshop for 8 

precision machining 
[2]

. The former includes motor magnet loss, electric loss, mechanical loss 9 

and some additional losses, and the latter is mainly attributed to the friction between bearing 10 

parts. Generally, the overwhelming majorities of these power losses contribute to the spindle 11 

internal heat generations, to cause the spindle thermal deformation errors for machining 12 

accuracy degradation. To solve this problem, recirculation coolants are always applied onto the 13 

spindle motor and bearings to realize dissipation management onto their heat generations 14 

caused by power losses, and to reduce the harmful heat absorbed by spindle structure 
[3, 4]

. 15 

  16 

Fig. 1 Energy conversion of an operating motorized spindle unit 17 

However, although recirculation coolants can improve the thermal behaviors of motorized 18 

spindle unit, the deficiencies of its traditional uniform and open-loop strategy are being exposed 19 

with the rapid evolution of precision machining. As revealed in Fig. 2: On one hand, the 20 

traditional strategy for spindle recirculation cooling is based on flow divider to realize parallel 21 

coolants from one recirculation cooler, which means different spindle heat generating parts with 22 
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various heat generation scales are forced to bear an uniform supply cooling temperature. This 1 

can generally result in the heat exchange imbalance of spindle structure. On the other hand, the 2 

traditional strategy always has the open-loop temperature control method. Its supply cooling 3 

temperature is generally determined based on the preset constant instruction or the ambient 4 

temperature tracked by Resistive Thermal Detector (RTD) sensors, and thus it is hardly to be 5 

adjusted dynamically according to the spindle time-varying thermal behaviors in operation. 6 

This can give rise to the incompleteness and instability of the spindle structural heat dissipation. 7 

All these insufficiencies can weaken the effectiveness of traditional cooling strategy for 8 

reducing the spindle thermal errors 
[5, 6]

. 9 

 10 

Fig. 2 Principle of traditional strategy for spindle recirculation cooling 11 

To overcome these disadvantages of traditional uniform and open-loop cooling strategy, a 12 

differentiated multi-loops bath recirculation system was developed in our previous study 
[7]

. On 13 

this basis, being the preliminary attempt to differentiated and closed-loop dissipation strategy 14 

for spindle internal heat generations, the constant supply cooling powers strategy was proposed. 15 

This strategy was experimentally verified to be more efficient in improving the spindle thermal 16 

behaviors than traditional strategy. However, from the perspective of spindle energy exchange, 17 

this strategy can reach the time-averaged spindle cooling effect exclusively, but hardly realize 18 
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the real-time and accurate dissipations onto the spindle time-variant heat generations, which are 1 

closely related to spindle working conditions. 2 

For the realization of the real-time power matching between spindle heat generations and 3 

dissipations, this paper makes modifications based on constant supply cooling powers strategy, 4 

to construct a power matching based dissipation strategy for internal heat generations of 5 

motorized spindle unit. This strategy can realize the sufficient dissipations of spindle internal 6 

heat generations, for further improvements of spindle accuracy and accuracy stability. The 7 

remainder of the paper is organized as follows: Section 2 establishes the models of the 8 

theoretical interaction among structural heat generations, dissipations and conductions of the 9 

operating motorized spindle unit, and then obtains the relationships with other spindle thermal 10 

behaviors. Based on these analyses, Section 3 proposes the realization method of the power 11 

matching based dissipation strategy for spindle heat generations. Section 4 analyzes the 12 

methods and results of the advantageous verification experiments for the developed power 13 

matching based spindle cooling strategy. Section 5 gives the conclusions of the whole study. 14 

2 Theoretical model for power matching based dissipation strategy for spindle internal 15 

heat generations 16 

In this section, the general interaction of the internal heat generation, dissipation and 17 

conduction of an operating motorized spindle unit is analyzed, and then the theoretical 18 

association with spindle thermal deformation behaviors is investigated, finally the theoretical 19 

guidance for the power matching based dissipation strategy for spindle internal heat generation 20 

is formed. 21 

2.1 Spindle structural heat exchange - thermal deformation modeling 22 

The physical structure of a typical type of motorized spindle unit is illustrated in Fig. 3: Its 23 

main heat sources (heat generating parts) are front bearings, back bearing and built-in motor of 24 

the spindle. Meanwhile, 3 coolant channels are designed around these heat sources respectively 25 

to realize recirculation cooling effects for dissipations of their heat generations. When the 26 

motorized spindle unit is operating in a constant 20℃ workshop, its heat conductions Φcon (W) 27 

are closely associated with its heat generations Φgen (W) and dissipations Φcoo (W), which is 28 
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described in Fig. 4. Then according to energy conservation law, the spindle temperature 1 

distribution can be calculated as [8]: 2 

gen coo con T

d
=

d

T
c   


                        (1) 3 

 4 

Fig. 3 Design of spindle heat sources and coolant channels 5 

In equation (1), Tc  is heat capacitance (J/℃), and the heat conduction ( con ) through a cross 6 

section of spindle continuous material is [9]: 7 

con

d

d

T
S

x
                                (2) 8 

In equation (2), S is the area perpendicular to the direction of heat flux (m2); λ is the thermal 9 

conductivity (W/(m•℃)). 10 

Being the source for spindle thermal errors, thermal deformation of the spindle structure is 11 

analyzed based on the thermal deformation ΔL of one dimensional rod with constraints: 12 
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                        (3) 1 

In equation (3), L is the original length (m); Ti and Ti−1 are the temperatures at τi moment and 2 

τi-1 moment (℃); α is the thermal expansion coefficient (℃-1); σ, P, E, j and A are the stress 3 

(MPa), the axial force (N), the modulus of elasticity (N/m2), the axial stiffness (N/m) and the 4 

area of the cross section (m2) respectively. Then equation (3) can be simplified as: 5 

    

 1
=

1

i iL T T
L

jL

AE

 



                             (4) 6 

 7 

Fig. 4 Association of spindle heat generations, dissipations and conductions 8 

2.2 Heat power measures for constantly least thermal deformation of spindle structure 9 

For the improvement of precision machining accuracy and accuracy stability, the least 10 

thermal errors of operating motorized spindle unit can be realized consistently by the avoidance 11 



 

7 

of spindle structural thermal deformation. According to equation (4), the thermal deformation of 1 

spindle structure can be theoretically equal to zero only if the spindle temperature meets: 2 

1

d
=0

d
i i

T
T T


                               (5) 3 

It is assumed that motorized spindle unit has the structure-averaged temperature distribution 4 

(=20℃ ambient temperature) at the initial state of spindle operation, which means: 5 

d
=0

d

T

x
                                 (6) 6 

Equations (5) - (6) can be substituted into Equations (1) - (2) to obtain heat power measures 7 

for persistent realization of structure-averaged spindle temperature distribution, at any operating 8 

moment τ: 9 

gen coo                                 (7) 10 

Equation (7) clarifies the core principle of the power matching based dissipation strategy for 11 

internal heat generations of operating motorized spindle unit, which will be developed and 12 

introduced in Section 3. Generally, the spindle internal heat generations Φgen in equation (7) 13 

have time-variant scales, because they are directly affected by the spindle working conditions 14 

including rotation speed and cutting loads. Therefore, the realization of real-time power 15 

matching between spindle heat generations and dissipations must be based on the differentiated 16 

and closed-loop cooling strategy for the motorized spindle unit in operation.  17 

3 Realization method of power matching based dissipation strategy for spindle internal 18 

heat generations 19 

From precision machining perspectives, spindle thermal deformation errors are expected to 20 

be persistently eliminated for the satisfactory accuracy and accuracy stability, during precision 21 

machining activities. According to the conclusion in Section 2 that the least spindle thermal 22 

errors can be realized by the method of real-time and accurate dissipations of the spindle 23 

internal heat generations, the power matching based dissipation strategy for spindle internal 24 

heat generations has been developed, and its realization method is depicted in Fig. 5: On one 25 
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hand, the real-time heat power estimations of spindle bearings and motor are performed during 1 

spindle operation. On the other hand, to guarantee the real-time power matching between 2 

spindle heat generations and dissipations, the estimated heat power values are adopted for the 3 

real-time calculations about the required supply cooling powers of recirculation coolants, 4 

according to equation (7). The power matching between spindle heat generations and 5 

dissipations is mainly realized based on CNC communication - computation technology, and 6 

the calculated dissipation power values are implemented by the modified constant supply 7 

cooling powers strategy [7] for the motorized spindle unit. 8 

 9 

Fig. 5 Realization method of power matching based dissipation strategy onto spindle internal 10 

heat generations 11 

3.1 Real-time power estimations of spindle internal heat generations 12 

3.1.1 Power modeling of spindle internal heat generations 13 

Heat power models of spindle bearings and motor are vital for real-time power estimation of 14 

spindle internal heat generations, which is required by the implementation of power matching 15 

based dissipation strategy. The heat power models of bearings and motor are established based 16 

on their published methods respectively. 17 

(i) Spindle bearings 18 
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Generally, the spindle bearing heat is generated in bearing contact areas due to the frictions 1 

between balls and inner and outer races [10, 11]. Then the heat power bΦ (W) modeling of both 2 

spindle front bearings and back bearing (in Fig. 3) can be determined by the following method:
 

3 

4

b 0 11.047 10 ( )Φ n M M                            (8)  4 

In equation (8), n (r/min) is spindle rotating velocity, friction torque M0 (Nmm) brought by 5 

bearing lubricant viscosity and friction torque M1 (Nmm) caused by bearing applied force can 6 

be calculated respectively as: 7 

7 2/3 3

0 0 m 0

0 7 3

0 m 0

10 ( ) , 2000

160 10 , 2000

f n D n
M

f D n

 







 
 

 
                      (9)

 8 

1 1 mM = f F D                              (10) 
9 

In equations (9)-(10), f0, f1 are parameters related to the type, structure, force and lubrication 10 

of bearings; Fβ (N) is the load determined by the magnitude and direction of the force onto 11 

bearings; v0 (cSt) is the kinematic viscosity of lubricant; Dm (m) is the diameter of pitch circle. 12 

It can be concluded by the modeling method that, heat powers of spindle bearings are directly 13 

affected by spindle rotation speed and bearing loads, which is time-variant during the spindle 14 

operation. Meanwhile, the bearing preload, type, structure, size and lubrication, which are 15 

known and regarded as unchanged, also impact the scale of bearing heat generations.
 

16 

(ii) Spindle motor 17 

Heat generation power m (W) of spindle motor is mainly attributed to its magnet loss 18 

hP (W), electric loss CUP (W) and mechanical loss fP (W), with additional loss being ignored: 19 

m h CU f= +P P +P                               (11) 20 

For equation (11), the magnet loss hP (W) contains hysteresis loss tP (W) and eddy current 21 

loss P (W), and they can be calculated by: 22 
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 

2

t max

22 2

max

c6

P CfB

t fB
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
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





                           (12) 1 

In equation (12), C is a constant value related to electrical steel grades; f (s-1) is magnetizing 2 

frequency; Bmax (T) is the maximum magnetic flux density; t (m) is the thickness of silicon steel 3 

sheet; c  (kg/m3) and ρ (Ωm) are the density and electrical resistivity of iron core respectively.  4 

Besides, the electric loss CUP (W) in equation (11) can be calculated by:  5 

2

C
CU =

I L
P

S


                              (13) 6 

In equation (13), I (A) is the current; C (Ωm), L (m) and S (m2) are the resistivity, length, 7 

sectional area of a conductor. 8 

Finally, the calculation method of mechanical loss fP (W) in equation (11) is: 9 

3 4

f air f fP C R L                             (14) 10 

In equation (14), C is the frictional coefficient; fR  (m) and fL  (m) are outer radius and 11 

length of rotor;   (rad/s) is the angular velocity of rotor; air (kg/m3) is the density of air. 12 

During the spindle operation, time-variant factors influencing the motor heat generation scale 13 

mainly include spindle rotation speed and electricity. Besides, there are still some time-invariant 14 

factors, such as motor physical properties and structural scales, contributing to heat generation 15 

modeling of spindle motor. 16 

3.1.2 Realization of real-time power estimations of spindle internal heat generations 17 

It can be concluded from Section 3.1.1 that, the power modeling of spindle heat sources must 18 

be done based on required parameters. Some of them are time-variant during the spindle 19 

operation, and the others are not. As shown in Fig. 6, the former must be monitored by CNC 20 

communication technology, and the latter can be preset in the host computer software, for the 21 
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realization of real-time power modeling of spindle internal heat generations. Generally, the 1 

power modeling values of spindle heat sources have obvious inconsistencies with real ones. 2 

Therefore, power modeling values of spindle heat sources must be corrected to finish their 3 

real-time power estimations. The correction method is given as follows: 4 

 gen b m
k b                                (15) 5 

  In equation (15), k and b are the proportionality and deviation coefficient respectively for the 6 

power modeling corrections of spindle heat sources. The determinations of them must be based 7 

on the experimental trial and error method introduced in Section 3.2.3. 8 

 9 

Fig. 6 Realization method of real-time power estimations of spindle internal heat generations 10 

3.2 Real-time power determinations of spindle internal heat dissipations 11 

3.2.1 Power matching based modification onto constant supply cooling powers strategy 12 

It can be observed from Fig. 3 that, in order to realize the dissipations of internal heat 13 

generations of operating motorized spindle unit, coolant channels are designed for recirculation 14 

coolants being applied nearby spindle heat sources (front bearings, motor and back bearing). 15 

Meanwhile, these heat dissipations can bring the real-time coolant temperature rises between 16 

outlets and inlets of coolant channels. Then these temperature rises can reflect the real-time 17 

power scales coo (W) of the spindle heat dissipations onto heat sources 1#-3# respectively by 18 

the following method: 19 
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coo

i i

_i c Q T   , i=1, 2, 3                      (16) 1 

In equation (16), c (J/(kg·K)), ρ (kg/m3) and Q (L/min) are special heat, density and supply 2 

flow rate of recirculation coolants respectively; T  (℃) is real-time coolant temperature rise 3 

between outlet and inlet of coolant channel. To be more advantageous than traditional cooling 4 

strategy for motorized spindle unit, the constant supply cooling powers strategy [7] was 5 

presented in our previous work. This strategy can realize constantly the expected dissipation 6 

powers of spindle recirculation coolants. Its principle is based on the differentiated realizations 7 

of objective scales of T  for different spindle heat sources, with c, ρ and Q being consistent 8 

with time. 9 

In this paper, constant supply cooling powers strategy is modified to be associated with the 10 

real-time power estimations of spindle internal heat generations, to realize the power matching 11 

between spindle heat generations and dissipations. Because of the time-variant property of 12 

spindle internal heat generations, real-time calculations of objective dissipation power scales 13 

onto spindle heat sources 1#-3# must be based on the equations (7), (15) and (16). Then the 14 

real-time calculation strategy for coolant supply temperatures Tsu (℃) is constructed: 15 

su +1 ou

Δ
, 1,2,3

= Δ
_ _

i
i i i

i

ii i

k b
T

c Q i

T T T
 









 



 


                      (17) 16 

In equation (17), Tsu (℃) and Tou (℃) are the supply (inlet) and outlet temperature for spindle 17 

recirculation coolant respectively; ΔT  (℃) is the objective coolant temperature rise between 18 

outlet and inlet of the coolant channel. 19 

3.2.2 Realization of modified constant supply cooling powers strategy 20 

The presented spindle constant supply cooling powers strategy must be realized based on the 21 

previous differentiated multi-loops bath recirculation system. As revealed in Fig.7, 3 coolant 22 

channels of motorized spindle unit are equipped with 3 recirculation branches respectively of 23 

this system for different coolant supply temperatures onto spindle heat sources. 24 
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 1 

Fig. 7 Spindle coolant channels equipped with differentiated multi-loops bath recirculation 2 

system 3 

Meanwhile, Fig. 8 expresses the realization principle of the constant supply cooling power in 4 

ith recirculation branch (i=1, 2, 3): The RTD sensor for coolant outlet temperature detection is 5 

used to trigger the real-time calculation in host computer software for the generation of supply 6 

temperature instructions. Specially, this calculation must be based on equation (17) with k , b , 7 

c ,   and Q  being consistent with time. The aim is to ensure the real-time power matching 8 

between spindle internal heat generations and dissipations. 9 

 10 

Fig. 8 Realization method of modified constant supply cooling powers strategy in ith 11 

recirculation branch (i=1, 2, 3) 12 

3.2.3 Coefficient determinations for power matching based dissipation strategy for spindle 13 

heat generations 14 
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In equation (17), the correcting coefficients k and b must be determined by the experimental 1 

trial and error method. It can be concluded from Section 2 that gen coo   is the very method 2 

realizing 
d

=0
d

T


 for an operating motorized spindle unit. Therefore, the determinations of 3 

coefficients k and b can be conducted by the trial and error method based on a series of spindle 4 

experiments. For each experiment, the motorized spindle unit is equipped with the power 5 

matching based dissipation strategy with random k and b values, and forced to have a regular 6 

3000 RPM rotation speed for 5 hours. The aim of these experiments is to find out the 7 

approximately appropriate values of correcting coefficients k and b, which can make the power 8 

matching based dissipation strategy ensure persistently 
d

=0
d

T


 during a spindle operation. 9 

4 Verification experiments 10 

For the power matching based dissipation strategy onto the spindle internal heat generations, 11 

its advantage in spindle structural heat dissipations is verified by experiments in this section. 12 

These experiments are performed with power matching based dissipation strategy and 2 existed 13 

spindle cooling strategies respectively. 14 

4.1 Experimental setup 15 

Beside the outlet temperature detections of spindle internal recirculation coolants above, 16 

there are some other thermal measurements about motorized spindle unit being adopted. As 17 

shown in Fig. 9, the structural temperature and thermal errors of motorized spindle unit were 18 

measured by the similar method of our previous study: On one hand, RTD sensors are located 19 

nearby spindle heat sources: TA and TB are measured for the temperature of front bearings; 20 

TC-TF stand for the motor temperature; TG and TH are used for detecting the back bearing 21 

temperature. On the other hand, the spindle thermal errors are detected by the eddy current 22 

displacement sensors based on inspection bar, and these sensors must be located according to 23 

standard method for the detection of spindle thermal errors
 [12]

. 24 
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 1 

Fig. 9 Sensor layout for evaluations about spindle thermal behaviors 2 

During experimental operations of motorized spindle unit, the detected outlet temperatures 3 

and real-time supply temperatures (inlet temperatures) of spindle coolants are monitored for the 4 

calculation of spindle dissipation powers onto heat sources 1#-3# respectively by equation (16). 5 

Meanwhile, the spindle structural temperatures and thermal errors are detected to evaluate the 6 

spindle thermal behaviors. 7 

4.2 Experimental method 8 

In order to verify the advantages of the presented power matching based dissipation strategy 9 

for spindle internal heat generations, the motorized spindle unit is operating under 3 different 10 

cooling strategies respectively: the traditional strategy (coolant supply temperatures are uniform 11 

and always equivalent to ambient temperature), the constant supply cooling powers strategy and 12 

the power matching based dissipation strategy. 13 

For all the verification experiments: ① motorized spindle unit is operating from 1000RPM 14 

to 5000RPM (increasing step is 1000RPM), and every speed condition lasts for 1 hour; ② the 15 

experimental workshop has a constant temperature (Tam=20±0.3℃); ③ the density ρ, special 16 

heat c and supply flow rate Q of adopted recirculation coolants are 910 kg/m3, 2090 J/ (kg·K) 17 

and 5L/min, respectively. 18 

4.3 Experimental results and discussions 19 

4.3.1 Spindle internal heat generations and dissipations 20 

In order to verify the advantage of the power matching based dissipation strategy in spindle 21 
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structural heat exchange, real-time powers of spindle internal heat dissipations onto heat 1 

sources 1#-3# under 3 different cooling strategies are calculated based on experimental coolant 2 

temperature detections. They are compared with the real-time heat power estimations of 3 

corresponding spindle heat sources, under the progressive spindle rotation speed condition. 4 

Fig. 10 (a) illustrates the comparisons of spindle front bearings: 2 existed spindle cooling 5 

strategies can hardly meet the real-time power matching requirement from spindle heat 6 

generations. For the uniform and open-loop strategy, the heat dissipation power of recirculation 7 

coolant has an increasing tendency. Its power values are always lower than the time-variant heat 8 

generation powers and higher than zero. Meanwhile, for the constant supply cooling powers 9 

strategy, the coolant heat dissipation power has an approximately consistent value. In initial 10 

period, the heat dissipation power is slightly higher than heat generation power; but with the 11 

increase of spindle rotation speed, the former is lower than the latter. Unlike existed strategies 12 

above, the power matching based dissipation strategy can guarantee that the real-time heat 13 

dissipation power always approximate to the heat generation power of spindle front bearings, 14 

with the progressive spindle rotation speed. 15 

Based on the heat generation-dissipation power comparisons of spindle front bearings in Fig. 16 

10 (a), the real-time power distinctions between the heat generations and dissipations caused by 17 

3 cooling strategies are calculated and compared in Fig. 10 (b). It can be observed that, the 18 

uniform and open-loop strategy have a consistently heating effect for spindle structure; under 19 

the constant supply cooling powers strategy, the spindle structure is slightly cooled by the front 20 

bearings in initial period, but heated subsequently. Specially, under the power matching based 21 

dissipation strategy, the heating effect from front bearings is always near to 0 during the spindle 22 

operation. This clarifies that the power matching based dissipation strategy can realize 23 

effectively the accurate dissipations onto heat generations of spindle front bearings. Actually, 24 

this conclusion can also be obtained by comparisons about the spindle motor and back bearing. 25 

But the related descriptions have been simplified for the length limit of the paper. 26 

http://www.baidu.com/link?url=7b7hwdpFRrCDVPhH4mqWJXkUto5Ay2g1FpY4f1VfdN0It5hMyFtJtMI9gPMBpw3wYkBgCusuNKNooViJtIpt_dgvZ0LC6HjQvWJfnHr6ZJO&wd=&eqid=bf8c3a500001a5b000000003578c89e4
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(a) Power comparisons between heat 

generations and dissipations 

(b) Relative power comparisons 

Fig. 10 Experimental heat generation-dissipation power analysis about spindle front bearings 1 

4.3.2 Spindle structural temperatures 2 

Based on the RTD sensors in Fig. 9, the experimental temperature values of spindle front 3 

bearings, motor and back bearing can be obtained by the averaging calculations of real-time 4 

detections of TA / TB, TC-TF and TG / TH respectively. Because the motorized spindle unit is 5 

operating experimentally in a constant 20℃ workshop, the spindle temperature detections 6 

nearby heat sources can reflect the behaviors of spindle structural temperatures. 7 

In Figs. 11 (a) and (b), the experimental temperatures of spindle front bearings, motor and 8 

back bearing caused by power matching based dissipation strategy are compared with the ones 9 

caused by traditional strategy and constant supply cooling powers strategy respectively. 10 

Obviously, spindle structural temperatures under 2 existed strategies have irregular and unstable 11 

increasing tendencies. The reason is that the power inequality between spindle internal heat 12 

generations and dissipations can cause the consistently heating effect for spindle structure. 13 

However, the ones caused by power matching based dissipation strategy are more stable and 14 

close to ambient temperature (20±0.3℃). This verifies that power matching based dissipation 15 
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strategy is more accurate and sufficient than the other 2 strategies in dissipations of spindle 1 

internal heat generations. 2 

  

(a) Compared with traditional uniform, 

open-loop strategy 

(b) Compared with constant supply cooling 

powers strategy 

Fig. 11 Experiment comparisons of spindle structural temperatures 3 

4.3.3 Spindle thermal errors 4 

Fig. 9 reveals the geometry relationship between thermal displacements of spindle nose 5 

(Point O) and the detected values from eddy current displacement sensors. This relationship 6 

results in the calculations of experimental linear thermal errors of motorized spindle unit, based 7 

on the detection of the spindle inspection bar. 8 

Figs. 12 (a) and (b) illustrate that the spindle linear thermal errors caused by power matching 9 

based dissipation strategy are compared with the ones caused by 2 existed cooling strategies 10 

respectively. It can be observed from Fig. 12 that, spindle thermal errors under 2 existed 11 

strategies are obviously increasing with time, which is always harmful to spindle accuracy and 12 

accuracy stability. This condition is attributed fundamentally to the power inequalities between 13 

spindle internal heat generations and dissipations. Meanwhile, thermal errors caused by power 14 

matching based dissipation strategy are more stable and near to zero than the ones caused by the 15 

other 2 strategies in different degrees. The reducing percentages of steady thermal errors are 16 
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listed in Table. 1. It can be concluded from the comparisons that the power matching based 1 

dissipation strategy has the advantage in eliminations of spindle thermal errors. This contributes 2 

to the improvement of the accuracy and accuracy stability of motorized spindle unit. 3 

  

(a) Compared with traditional uniform, 

open-loop strategy 

(b) Compared with constant supply cooling 

powers strategy 

Fig. 12 Experiment comparisons of spindle thermal errors 4 

Table 1. Reducing percentages of spindle thermal errors caused by power matching based 5 

dissipation strategy 6 

 
X  Y  Z  

Compared with traditional uniform, open-loop strategy 94.3% 68.8% 67.4% 

Compared with constant supply cooling powers strategy  64.9% 31.7% 54.8% 

5 Conclusions 7 

This paper mainly introduces a power matching based dissipation strategy for internal heat 8 

generations of motorized spindle unit, in order to implement the accurate real-time power 9 

matching between spindle heat generations and dissipations. The principle of this strategy is 10 

constructed based on the analyses about spindle structural heat generations, dissipations and 11 
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conductions. Then this strategy can be realized by real-time power estimations of spindle heat 1 

sources and the modified constant supply cooling powers strategy. In summary, conclusions of 2 

this paper are as follows:  3 

(1) From the heat transfer perspective, the power inequality between spindle internal heat 4 

generations and dissipations is the fundamental reason for the degradation of the accuracy 5 

and accuracy stability of a motorized spindle unit, which is operating in a constant 6 

temperature (20℃) workshop for precision machining. 7 

(2) Compared with existed spindle cooling strategies, the developed power matching based 8 

dissipation strategy has the obvious advantages in the dissipation of spindle internal heat 9 

generations, and it is more effective in spindle structural temperature stabilization and 10 

thermal errors elimination, which has been verified by experiments. 11 
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