8 research outputs found

    Carbapenem Susceptibility Testing Errors Using Three Automated Systems, Disk Diffusion, Etest, and Broth Microdilution and Carbapenem Resistance Genes in Isolates of Acinetobacter baumannii-calcoaceticus Complexâ–¿

    No full text
    The Acinetobacter baumannii-calcoaceticus complex (ABC) is associated with increasing carbapenem resistance, necessitating accurate resistance testing to maximize therapeutic options. We determined the accuracy of carbapenem antimicrobial susceptibility tests for ABC isolates and surveyed them for genetic determinants of carbapenem resistance. A total of 107 single-patient ABC isolates from blood and wound infections from 2006 to 2008 were evaluated. MICs of imipenem, meropenem, and doripenem determined by broth microdilution (BMD) were compared to results obtained by disk diffusion, Etest, and automated methods (the MicroScan, Phoenix, and Vitek 2 systems). Discordant results were categorized as very major errors (VME), major errors (ME), and minor errors (mE). DNA sequences encoding OXA beta-lactamase enzymes (blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, and blaOXA-51-like) and metallo-β-lactamases (MBLs) (IMP, VIM, and SIM1) were identified by PCR, as was the KPC2 carbapenemase gene. Imipenem was more active than meropenem and doripenem. The percentage of susceptibility was 37.4% for imipenem, 35.5% for meropenem, and 3.7% for doripenem. Manual methods were more accurate than automated methods. blaOXA-23-like and blaOXA-24-like were the primary resistance genes found. blaOXA-58-like, MBLs, and KPC2 were not present. Both automated testing and manual testing for susceptibility to doripenem were very inaccurate, with VME rates ranging between 2.8 and 30.8%. International variability in carbapenem breakpoints and the absence of CLSI breakpoints for doripenem present a challenge in susceptibility testing

    Aminoglycoside Resistance and Susceptibility Testing Errors in Acinetobacter baumannii-calcoaceticus Complex â–¿

    No full text
    Antimicrobial resistance is depleting the pharmacopeia of agents clinically useful against Gram-negative bacilli. As the number of active agents diminishes, accurate susceptibility testing becomes critical. We studied the susceptibilities of 107 isolates of the Acinetobacter baumannii-calcoaceticus complex to amikacin, gentamicin, and tobramycin using disk diffusion, Etest, as well as the Phoenix, Vitek 2, and MicroScan automated systems, and compared the results to those obtained by broth microdilution. Genes encoding aminoglycoside-modifying enzymes (AMEs) were detected by multiplex PCR, and clonal relationships were determined by pulsed-field gel electrophoresis. Tobramycin was the most active aminoglycoside (27.1% of isolates were susceptible). Disk diffusion and Etest tended to be more accurate than the Vitek 2, Phoenix, and MicroScan automated systems; but errors were noted with all methods. The Vitek 2 instrument incorrectly reported that more than one-third of the isolates were susceptible to amikacin (a very major error). Isolates were polyclonal, with 26 distinct strains, and carried multiple AME genes unrelated to the strain type. The presence of the ant(2")-Ia gene was statistically associated with resistance to each aminoglycoside. The AME genotype accounted for the resistance profile observed in a minority of isolates, suggesting the involvement of multiple resistance mechanisms. Hospital pharmacy records indicated the preferential use of amikacin over other aminoglycosides in the burn intensive care unit, where aminoglycoside resistance is prevalent. The resistance in that unit did not correlate with a predominant strain, AME genotype, or total annual aminoglycoside consumption. Susceptibility to tobramycin increased, even though susceptible isolates carried AME genotypes predicting the inactivation of tobramycin. Determination of the relative contribution of multiple concurrent resistance mechanisms may improve our understanding of aminoglycoside resistance in the Acinetobacter baumannii-calcoaceticus complex
    corecore