1,512 research outputs found

    Glycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices

    Get PDF
    We have undertaken a detailed investigation of the adsorption, desorption and thermal processing of the astrobiologically significant isomers glycolaldehyde, acetic acid and methyl formate. Here, we present the results of laboratory infrared and temperature programmed desorption (TPD) studies of the three isomers from model interstellar ices adsorbed on a carbonaceous dust grain analogue surface. Laboratory infrared data show that the isomers can be clearly distinguished on the basis of their infrared spectra, which has implications for observations of interstellar ice spectra. Laboratory TPD data also show that the three isomers can be distinguished on the basis of their thermal desorption behaviour. In particular, TPD data show that the isomers cannot be treated the same way in astrophysical models of desorption. The desorption of glycolaldehyde and acetic acid from water-dominated ices is very similar, with desorption being mainly dictated by water ice. However, methyl formate also desorbs from the surface of the ice, as a pure desorption feature, and therefore desorbs at a lower temperature than the other two isomers. This is more clearly indicated by models of the desorption on astrophysical time-scales corresponding to the heating rate of 25 and 5 MāŠ™ stars. For a 25 MāŠ™ star, our model shows that a proportion of the methyl formate can be found in the gas phase at earlier times compared to glycolaldehyde and acetic acid. This has implications for the observation and detection of these molecules, and potentially explains why methyl formate has been observed in a wider range of astrophysical environments than the other two isomers

    Trapping and desorption of complex organic molecules in water at 20 K

    Get PDF
    The formation, chemical and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence the interaction of these species with water ice is crucially important in dictating their behaviour. Here we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices

    Using Adult Learning Characteristics and the Humanities to Teach Undergraduate Healthcare Students About Social Determinants of Health

    Get PDF
    Authors used an andragogy framework to help undergraduate allied health students better understand social determinants of health (SDOH) using a photo essay assignment. The study examined studentsā€™ perceptions of SDOH in various communities, description of health outcomes associated with their chosen SDOH, and lessons learned and suggestions to improve the assignment for future cohorts. Data were extracted from photo essays from 2019ā€“2021 and entered in Microsoft Excel and Word for data analysis after course completion. Conventional qualitative content analysis was used to analyze student evaluation data from open-ended questions. Data were extracted from 53 student essays from 2019 to 2021. Most photo essays described communities in South Carolina (nā€‰=ā€‰42, 79.2%), urban areas (nā€‰=ā€‰37, 69.8%), or intermediary SDOH (75.5%). Several themes emerged concerning lessons learned (awareness and empathy are key to addressing SDOH), health equity (collaboration is necessary to provide resources, especially for underserved populations), and constructive feedback for the instructor (more time to discuss SDOH and assignment with peers and instructor). Faculty must work with students to think about more upstream factors like policy and cultural and societal values. Collecting evaluation data, specifically lessons learned and constructive feedback for faculty, can help faculty continuously improve course topics and assignments. Following a transparency framework can support student success and help faculty become effective leaders in the classroom while teaching subjects like SDOH and social justice

    Hydrogenation of CO on a silica surface: an embedded cluster approach

    Get PDF
    The sequential addition of H atoms to CO adsorbed on a siliceous edingtonite surface is studied with an embedded cluster approach, using density functional theory for the quantum mechanical (QM) cluster and a molecular force field for the molecular mechanical (MM) cluster. With this setup, calculated QM/MM adsorption energies are in agreement with previous calculations employing periodic boundary conditions. The catalytic effect of the siliceous edingtonite (100) surface on CO hydrogenation is assessed because of its relevance to astrochemistry. While adsorption of CO on a silanol group on the hydroxylated surface did not reduce the activation energy for the reaction with a H atom, a negatively charged defect on the surface is found to reduce the gas phase barriers for the hydrogenation of both CO and H2C = O. The embedded cluster approach is shown to be a useful and flexible tool for studying reactions on (semi-)ionic surfaces and specific defects thereon. The methodology presented here could easily be applied to study reactions on silica surfaces that are of relevance to other scientific areas, such as biotoxicity of silica dust and geochemistry

    A TPD and RAIRS comparison of the low temperature behavior of benzene, toluene, and xylene on graphite

    Get PDF
    The first comparative study of the surface behavior of four small aromatic molecules, benzene, toluene, p-xylene, and o-xylene, adsorbed on graphite at temperatures ā‰¤30 K, is presented. Intermolecular interactions are shown to be important in determining the growth of the molecules on the graphite surface at low (monolayer) exposures. Repulsive intermolecular interactions dominate the behavior of benzene and toluene. By contrast, stronger interactions with the graphite surface are observed for the xylene isomers, with islanding observed for o-xylene. Multilayer desorption temperatures and energies increase with the size of the molecule, ranging from 45.5 to 59.5 kJ molāˆ’1 for benzene and p-xylene, respectively. Reflection absorption infrared spectroscopy gives insight into the effects of thermal processing on the ordering of the molecules. Multilayer benzene, p-xylene, and o-xylene form crystalline structures following annealing of the ice. However, we do not observe an ordered structure for toluene in this study. The ordering of p-xylene shows a complex relationship dependent on both the annealing temperature and exposure

    On Silicon Group Elements Ejected by Supernovae Type Ia

    Full text link
    There is compelling evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Ye at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi nuclear statistical equilibrium are preserved during the subsequent freezeout. This allows one to potential recovery of Ye at explosion from the abundances recovered from an observed spectra. We show that measurement of 28Si, 32S, 40Ca, and 54Fe abundances can be used to construct Ye in the silicon rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Ye to 6 percent. This is because these isotopes dominate the composition of silicon-rich material and iron rich material in quasi nuclear statistical equilibrium. Analytical analysis shows that the 28Si abundance is insensitive to Ye, the 32S abundance has a nearly linear trend with Ye, and the 40Ca abundance has a nearly quadratic trend with Ye. We verify these trends with post-processing of 1D models and show that these trends are reflected in model synthetic spectra.Comment: Submitted to the Ap

    Thermally induced mixing of water dominated interstellar ices

    Get PDF
    Despite considerable attention in the literature being given to the desorption behaviour of smaller volatiles, the thermal properties of complex organics, such as ethanol (C2H5OH), which are predicted to be formed within interstellar ices, have yet to be characterized. With this in mind, reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to probe the adsorption and desorption of C2H5OH deposited on top of water (H2O) films of various thicknesses grown on highly oriented pyrolytic graphite (HOPG) at 98 K. Unlike many other molecules detected within interstellar ices, C2H5OH has a comparable sublimation temperature to H2O and therefore gives rise to a complicated desorption pro. le. RAIRS and TPD show that C2H5OH is incorporated into the underlying ASW film during heating, due to a morphology change in both the C2H5OH and H2O ices. Desorption peaks assigned to C2H5OH co-desorption with amorphous, crystalline (CI) and hexagonal H2O-ice phases, in addition to C2H5OH multilayer desorption are observed in the TPD. When C2H5OH is deposited beneath ASW films, or is co-deposited as a mixture with H2O, complete co-desorption is observed, providing further evidence of thermally induced mixing between the ices. C2H5OH is also shown to modify the desorption of H2O at the ASW-CI phase transition. This behaviour has not been previously reported for more commonly studied volatiles found within astrophysical ices. These results are consistent with astronomical observations, which suggest that gas-phase C2H5OH is localized in hotter regions of the ISM, such as hot cores

    Learning Our Way Through: Collaborative Self-study in an Evolving Professional Development School (PDS) Partnership

    Get PDF
    Purpose of study: Professional development schools (PDSs) are essentially learning communities in which all participants increase their knowledge about how teaching and learning works and how best to manage the collaborative enterprise (Goodman, 2002; Horn, 2007; Mantle- Bromley, 2002; Patrizio & Gadja, 2007; Sue, 2002). The National Council for the Accreditation of Teachers (NCATE, 2010), identified PDS as an avenue through which aspiring teachers can be provided the opportunity to integrate theory with practice. In addition, PDS partnerships serve as a vehicle for the professionalization of teachers and systematic examination and evaluation of practice. However, according to the National Association of Professional Development Schools (NAPDS, 2008), many colleges and universities who participate in PDS partnerships do not fully understand the true meaning of PDS. This creates a void between the concept of PDS as originally proposed (Holmes Group, 1990), and the reality of the PDS as it operates in many of the partnerships (Webb-Dempsey, Steel, Shambaugh and Dampsey, 2007). In addition, while interorganizational collaboration is a PDS imperative, it remains complex, multilayered and labor-intensive for both school and university faculty (Patrizio & Gadja, 2007; Rice & Afman, 2002; Su, 2002). This situation calls for a clear understanding of the concept of PDS as well as frequent and systematic review of the goals and objectives of PDS partnerships. The purpose of this study was to better understand one teaching college\u27s collaborative relationship with the partner schools. The study is guided by the following questions. What was the nature of the collaboration between a teaching college and five urban-based PDSs? What were the individual and collective experiences of the faculty as well as other stakeholders in the collaboration? What factors, if any, impacted the collaboration

    Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa II: hivenalkuaineet ja isotoopit

    Get PDF
    The Magma Chamber Simulator (MCS) is a thermodynamic model that computes the phase, thermal, and compositional evolution of a multiphaseā€“multicomponent system of a Fractionally Crystallizing resident body of magma (i.e., melt Ā± solids Ā± fluid), linked wallrock that may either be assimilated as Anatectic melts or wholesale as Stoped blocks, and multiple Recharge reservoirs (RnASnFC system, where n is the number of user-selected recharge events). MCS calculations occur in two stages; the first utilizes mass and energy balance to produce thermodynamically constrained major element and phase equilibria information for an RnASnFC system; this tool is informally called MCS-PhaseEQ, and is described in a companion paper (Bohrson et al. 2020). The second stage of modeling, called MCS-Traces, calculates the RASFC evolution of up to 48 trace elements and seven radiogenic and one stable isotopic system (Sr, Nd, Hf, 3xPb, Os, and O) for the resident melt. In addition, trace element concentrations are calculated for bulk residual wallrock and each solid (Ā± fluid) phase in the cumulate reservoir and residual wallrock. Input consists of (1) initial trace element concentrations and isotope ratios for the parental melt, wallrock, and recharge magmas/stoped wallrock blocks and (2) solid-melt and solidā€“fluid partition coefficients (optional temperature-dependence) for stable phases in the resident magma and residual wallrock. Output can be easily read and processed from tabulated worksheets. We provide trace element and isotopic results for the same example cases (FC, R2FC, AFC, S2FC, and R2AFC) presented in the companion paper. These simulations show that recharge processes can be difficult to recognize based on trace element data alone unless there is an independent reference frame of successive recharge events or if serial recharge magmas are sufficiently distinct in composition relative to the parental magma or magmas on the fractionation trend. In contrast, assimilation of wallrock is likely to have a notable effect on incompatible trace element and isotopic compositions of the contaminated resident melt. The magnitude of these effects depends on several factors incorporated into both stages of MCS calculations (e.g., phase equilibria, trace element partitioning, style of assimilation, and geochemistry of the starting materials). Significantly, the effects of assimilation can be counterintuitive and very different from simple scenarios (e.g., bulk mixing of magma and wallrock) that do not take account phase equilibria. Considerable caution should be practiced in ruling out potential assimilation scenarios in natural systems based upon simple geochemical ā€œrules of thumbā€. The lack of simplistic responses to open-system processes underscores the need for thermodynamical RASFC models that take into account mass and energy conservation. MCS-Traces provides an unprecedented and detailed framework for utilizing thermodynamic constraints and element partitioning to document trace element and isotopic evolution of igneous systems. Continued development of the Magma Chamber Simulator will focus on easier accessibility and additional capabilities that will allow the tool to better reproduce the documented natural complexities of open-system magmatic processes.Peer reviewe
    • ā€¦
    corecore