90 research outputs found

    Are language production problems apparent in adults who no longer meet diagnostic criteria for attention-deficit/hyperactivity disorder?

    Get PDF
    In this study, we examined sentence production in a sample of adults (N = 21) who had had attention-deficit/hyperactivity disorder (ADHD) as children, but as adults no longer met DSM-IV diagnostic criteria (APA, 2000). This “remitted” group was assessed on a sentence production task. On each trial, participants saw two objects and a verb. Their task was to construct a sentence using the objects as arguments of the verb. Results showed more ungrammatical and disfluent utterances with one particular type of verb (i.e., participle). In a second set of analyses, we compared the remitted group to both control participants and a “persistent” group, who had ADHD as children and as adults. Results showed that remitters were more likely to produce ungrammatical utterances and to make repair disfluencies compared to controls, and they patterned more similarly to ADHD participants. Conclusions focus on language output in remitted ADHD, and the role of executive functions in language production

    Comparative acute efficacy and tolerability of OROS and immediate release formulations of methylphenidate in the treatment of adults with attention-deficit/hyperactivity disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main aim of this study was to compare the safety and efficacy of IR MPH administered three times daily to those of once daily OROS-MPH.</p> <p>Methods</p> <p>Subjects were outpatient adults satisfying full diagnostic criteria for DSM-IV ADHD between 19 and 60 years of age. Data from two independently conducted 6-week placebo controlled, randomized clinical trials of IR-MPH (tid) and of OROS-MPH were pooled to create three study groups: Placebo (N = 116), IR-MPH (tid) (N = 102) and OROS-MPH (N = 67).</p> <p>Results</p> <p>Eight-five percent (N = 99) of placebo treated subjects, 77% (N = 79) of the IR-MPH (tid) treated subjects, and 82% (N = 55) of the OROS-MPH treated subjects completed the 6-week trial. Total daily doses at endpoint were 80.9 ± 31.9 mg, 74.8 ± 26.2 mg, and 95.4 ± 26.3 mg in the OROS-MPH, IR-MPH (tid), and placebo groups, respectively. At endpoint, 66% (N = 44) of subjects receiving OROS-MPH and 70% (N = 71) of subjects receiving IR-MPH (tid) were considered responders compared with 31% (N = 36) on placebo.</p> <p>Conclusion</p> <p>Comparison of data from two similarly designed, large, randomized, placebo-controlled, trials, showed that equipotent daily doses of once daily OROS-MPH had similar efficacy to that of TID administered IR MPH.</p> <p>Trial Registration</p> <p>The trial of OROS-MPH was registered at clinicaltrials.gov, number NCT00181571.</p

    Protein kinase C and cardiac dysfunction: a review

    Get PDF
    Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure

    Nitrous Oxide Remains a Valuable Adjuvant for Surgery

    No full text

    ADHD IN ADULTS

    No full text

    Effects of Scopoletin on Growth, CO 2 Exchange Rates, and Concentration of Scopoletin, Scopolin, and Chlorogenic Acids in Tobacco, Sunflower, and Pigweed

    No full text
    In an attempt to establish the effects of scopoletin on growth of tobacco, sunflower, and pigweed, seedlings were treated with scopoletin through a nutrient culture. A threshold level of inhibition was found in all cases between 10-4M and 10-3M concentrations of scopoletin with the former showing no major growth effects, whereas the 10-3M solutions were greatly inhibitory to all three species. All 5 x 10-4M treatments had an intermediate effect on growth. Analyses of scopoletin, scopolin, and chlorogenic acid concentrations of tobacco and sunflower treated with 10-4M and 5 x 10-4M scopoletin concentrations showed that at both of these levels, scopoletin and scopolin increased significantly in the tissue when compared with the control. The plants treated with the 5 x 10-4M solution had the largest increase in these compounds. The great increase in scopolin suggested a direct conversion of scopoletin to its glycoside, scopolin, within the plant. Chlorogenic acid levels were not different from controls and the variations in isomers (band 510 and neochlorogenic acid) were indefinite. A reduced shoot:root ratio coincided with a greater build up of scopoletin and scopolin in the shoots than in the roots of inhibited tobacco seedlings. Respiration rates in treated plants remained unchanged, but CO2 exchange analyses indicated that a reduced net photosynthetic rate was a contributing factor to reduced growth. Net photosynthesis in 10-3M scopoletin treated tobacco plants was depressed to as low as 34% of that of the controls by the fourth day after treatment. In sunflowers, which normally have very small amounts of scopoletin and scopolin in the tissue, growth retardation was not as pronounced and the lowest photosynthetic rate resulting from treatment was 74% of controls. Reduced growth in leaf area over a 12 day experiment correlated well with the significant reduction in the rate of net photosynthesis in tobacco and a fairly good correlation was found also in sunflower. Amounts of CO2 fixed/illumination hour in treated plants compared with controls reinforced the conclusion that a reduction in net photosynthesis contributed to plant inhibition in tobacco and sunflower plants. Limited experiments with pigweed also indicated significantly reduced photosynthesis in the 10-3M scopoletin treated seedlings. Scopoletin could contribute to a cooperative effect causing plant inhibition in the natural environment and therefore be a factor of ecological significance

    Breaching Biological Barriers: Protein Translocation Domains as Tools for Molecular Imaging and Therapy

    No full text
    The lipid bilayer of a cell presents a significant barrier for the delivery of many molecular imaging reagents into cells at target sites in the body. Protein translocation domains (PTDs) are peptides that breach this barrier. Conjugation of PTDs to imaging agents can be utilized to facilitate the delivery of these agents through the cell wall, and in some cases, into the cell nucleus, and have potential for in vitro and in vivo applications. PTD imaging conjugates have included small molecules, peptides, proteins, DNA, metal chelates, and magnetic nanoparticles. The full potential of the use of PTDs in novel in vivo molecular probes is currently under investigation. Cells have been labeled in culture using magnetic nanoparticles derivatized with a PTD and monitored in vivo to assess trafficking patterns relative to cells expressing a target antigen. In vivo imaging of PTD-mediated gene transfer to cells of the skin has been demonstrated in living animals. Here we review several natural and synthetic PTDs that have evolved in the quest for easier translocation across biological barriers and the application of these peptide domains to in vivo delivery of imaging agents
    • …
    corecore