15 research outputs found

    Understanding consumers’ behavior intention of recycling mobile phone through formal channels in China: The effect of privacy concern

    No full text
    The aim of this paper is to explore consumers’ intention of recycling obsolete mobile phone through formal channels in China. Taking Jiangsu Province as an example, the survey results revealed that although nearly half of consumers prefer to save their obsoleted mobile phones at residence, those who are willing to participate in recycling prefer formal recycling channels instead of informal ones. To explore the determinants of formal recycling intention from the perspective of consumers’ psychological characteristics, an integrative model based on the theory of planned behavior was established, in which the effect of consumers’ privacy concern was thoroughly explored. The results indicated that recycling attitude, subjective norm, perceived behavioral control, and moral norm are all positively influential factors. Inconsistent with prior studies, consumers’ privacy concern is found to have a direct positive rather than a negative effect on formal recycling intention. It also has a negative moderating effect on the relationship between subjective norm and formal recycling intention. Therefore, to promote consumers’ formal recycling behavior of obsolete mobile phones, a series of measures are proposed to influence these psychological factors in the model. First, a positive social atmosphere for participation in formal recycling should be vigorously created. Then, further efforts are required to increase the publicity and availability of formal recycling channels. Furthermore, joint efforts should be made for privacy information protection during formal recycling processes, including establishing certification standards for secure data erasure, further routinizing recycling processes and establishing a credible image to obtain consumers’ trust by formal recycling enterprises, etc

    Effect of Admission Time on the Outcomes of Liver Cirrhosis with Acute Upper Gastrointestinal Bleeding: Regular Hours versus Off-Hours Admission

    No full text
    Background and Aims. Acute upper gastrointestinal bleeding (AUGIB) is a lethal complication of liver cirrhosis. We aimed to compare the outcomes of patients with liver cirrhosis and AUGIB who were admitted to hospital on regular hours and off-hours. Methods. This retrospective study screened all cirrhotic patients with AUGIB who were admitted to our hospital from January 2010 to June 2014 for the test cohort and from December 2014 to March 2018 for the validation cohort. A 1:1 propensity score matching analysis was performed to adjust the Child-Pugh and MELD scores. In-hospital mortality, 5-day rebleeding rate, length of stay, and total payment were primary outcomes. Results. Overall, 826 and 173 patients with liver cirrhosis and AUGIB were included in the test and validation cohorts, respectively. After propensity score matching, 226 and 40 patients were included in the test and validation cohorts, respectively. The overall analysis of the test cohort found significantly higher Child-Pugh score (P=0.006), 5-day rebleeding rate (18.69% versus 10.72%, P=0.001), and total payment („25,906.83 versus „22,017.42, P<0.001) in patients admitted on off-hours. By contrast, the overall analysis of the validation cohort did not find any difference in Child-Pugh score, 5-day rebleeding, in-hospital mortality, length of stay, or hospital payment between patients admitted on regular hours and off-hours. Similarly, the propensity score matching analyses of both test and validation cohorts found no difference in these primary outcomes between the two groups. Conclusions. Off-hours admission might not be negatively associated with the outcomes of patients with liver cirrhosis and AUGIB

    Xuebijing Injection Combined with Antibiotics for the Treatment of Spontaneous Bacterial Peritonitis in Liver Cirrhosis: A Meta-Analysis

    No full text
    Background and Aim. Spontaneous bacterial peritonitis (SBP) is one of the most common complications of liver cirrhosis. Antibiotics are the main treatment regimen of SBP. Traditional Chinese medicine Xuebijing injection has been used in such patients. Our study aimed to overview the efficacy of Xuebijing injection combined with antibiotics for the treatment of SBP. Method. We searched the PubMed, Embase, China National Knowledge Infrastructure, VIP, and Wanfang databases. The search items included “Xuebijing”, “peritonitis”, “liver cirrhosis”, and “random” to identify all relevant randomized controlled trials (RCTs). The Cochrane risk of bias tool was used to assess the study quality. The odd ratios (ORs) with 95% confidence intervals (CIs) were calculated by using a random-effect model. Heterogeneity was also calculated. Results. A total of 9 RCTs were included. The study quality was unsatisfied. The overall (OR = 2.95, 95% CI = 1.97–4.42, p<0.00001) and complete (OR = 2.18, 95% CI = 1.57–3.04, p<0.00001) responses were significantly higher in the Xuebijing injection combined with antibiotics group than the antibiotics alone group. The incidence of cirrhosis related complications, including hepatic encephalopathy and hepatorenal syndrome, was lower in the Xuebijing injection combined with antibiotics group than the antibiotics alone group. No significant heterogeneity was observed among studies. Conclusion. Additional use of Xuebijing injection may improve the efficacy of antibiotics for the treatment of SBP in liver cirrhosis. However, due to a low level of current evidence, we did not establish any recommendation regarding the use of Xuebijing injection for the treatment of SBP

    Xuebijing Injection Combined with Antibiotics for the Treatment of Spontaneous Bacterial Peritonitis in Liver Cirrhosis: A Meta-Analysis

    No full text
    Background and Aim. Spontaneous bacterial peritonitis (SBP) is one of the most common complications of liver cirrhosis. Antibiotics are the main treatment regimen of SBP. Traditional Chinese medicine Xuebijing injection has been used in such patients. Our study aimed to overview the efficacy of Xuebijing injection combined with antibiotics for the treatment of SBP. Method. We searched the PubMed, Embase, China National Knowledge Infrastructure, VIP, and Wanfang databases. The search items included “Xuebijing”, “peritonitis”, “liver cirrhosis”, and “random” to identify all relevant randomized controlled trials (RCTs). The Cochrane risk of bias tool was used to assess the study quality. The odd ratios (ORs) with 95% confidence intervals (CIs) were calculated by using a random-effect model. Heterogeneity was also calculated. Results. A total of 9 RCTs were included. The study quality was unsatisfied. The overall (OR = 2.95, 95% CI = 1.97–4.42, p<0.00001) and complete (OR = 2.18, 95% CI = 1.57–3.04, p<0.00001) responses were significantly higher in the Xuebijing injection combined with antibiotics group than the antibiotics alone group. The incidence of cirrhosis related complications, including hepatic encephalopathy and hepatorenal syndrome, was lower in the Xuebijing injection combined with antibiotics group than the antibiotics alone group. No significant heterogeneity was observed among studies. Conclusion. Additional use of Xuebijing injection may improve the efficacy of antibiotics for the treatment of SBP in liver cirrhosis. However, due to a low level of current evidence, we did not establish any recommendation regarding the use of Xuebijing injection for the treatment of SBP

    Genomic insights into salt adaptation in a desert poplar

    Get PDF
    &nbsp;Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.<br />Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils

    CEPC Technical Design Report -- Accelerator

    No full text
    The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore