170 research outputs found

    Urban rail transit passenger service quality evaluation based on the KANO–Entropy–TOPSIS model: the China case

    Get PDF
    In order to evaluate the URTPSQ (Urban Rail Transit Passenger Service Quality) comprehensively, find the shortage of URTPSQ, find out the difference between the actual service situation and the passenger’s expectation and demand,and provide passengers with better travel services, a passenger-oriented KANO–Entropy–TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method is proposed and applied in this paper. Firstly, a KANO model is applied to select the service quality indicators from the 24 URTPSQ evaluation sub-indicators, according to the selection results, the KANO service quality indicators of URTPSQ are constructed. Then the sensitivity of the KANO service quality indicators based on the KANO model are calculated and ranked, the PS (Passenger Satisfaction) of each KANO service quality indicator by using the Entropy–TOPSIS method is calculated and ranked. Based on the difference between the sensitivity degree rank and the satisfaction degree rank of each KANO service quality indicator, determine the service quality KANO indicators of the URTPSQ that need to be improved significantly. A case study is conducted by taking the Chengdu subway system in China as a background. The results show that the Chengdu subway operation enterprises should pay attention to the must-be demand first, then the one-dimensional demand, finally the attractive demand. The three indicators, including transfer on the same floor in the station, service quality of staffs of urban rail transit enterprises,and cleanness in the station and passenger coach, need to be improved urgently. For the managers and operators of urban rail transit system, the passengers’ must-be demand should be satisfied first if the KANO model is applied to evaluate the service. The indicators with highest sensitivity degree and lowest TOPSIS value should be improved based on the KANO–Entropy–TOPSIS model. First published online 14 December 202

    A Review on Security Issues and Solutions of the Internet of Drones

    Get PDF
    The Internet of Drones (IoD) has attracted increasing attention in recent years because of its portability and automation, and is being deployed in a wide range of fields (e.g., military, rescue and entertainment). Nevertheless, as a result of the inherently open nature of radio transmission paths in the IoD, data collected, generated or handled by drones is plagued by many security concerns. Since security and privacy are among the foremost challenges for the IoD, in this paper we conduct a comprehensive review on security issues and solutions for IoD security, discussing IoD-related security requirements and identifying the latest advancement in IoD security research. This review analyzes a host of important security technologies with emphases on authentication techniques and blockchain-powered schemes. Based on a detailed analysis, we present the challenges faced by current methodologies and recommend future IoD security research directions. This review shows that appropriate security measures are needed to address IoD security issues, and that newly designed security solutions should particularly consider the balance between the level of security and cost efficiency

    Mesenchymal stem cells as carriers and amplifiers in CRAd delivery to tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells (MSCs) have been considered to be the attractive vehicles for delivering therapeutic agents toward various tumor diseases. This study was to explore the distribution pattern, kinetic delivery of adenovirus, and therapeutic efficacy of the MSC loading of E1A mutant conditionally replicative adenovirus Adv-Stat3(-) which selectively replicated and expressed high levels of anti-sense Stat3 complementary DNA in breast cancer and melanoma cells.</p> <p>Methods</p> <p>We assessed the release ability of conditionally replicative adenovirus (CRAd) from MSC using crystal violet staining, TCID<sub>50 </sub>assay, and quantitative PCR. In vitro killing competence of MSCs carrying Adv-Stat3(-) toward breast cancer and melanoma was performed using co-culture system of transwell plates. We examined tumor tropism of MSC by Prussian blue staining and immunofluorescence. In vivo killing competence of MSCs carrying Adv-Stat3(-) toward breast tumor was analyzed by comparison of tumor volumes and survival periods.</p> <p>Results</p> <p>Adv-Stat3(-) amplified in MSCs and were released 4 days after infection. MSCs carrying Adv-Stat3(-) caused viral amplification, depletion of Stat3 and its downstream proteins, and led to significant apoptosis in breast cancer and melanoma cell lines. In vivo experiments confirmed the preferential localization of MSCs in the tumor periphery 24 hours after tail vein injection, and this localization was mainly detected in the tumor parenchyma after 72 hours. Intravenous injection of MSCs carrying Adv-Stat3(-) suppressed the Stat3 pathway, down-regulated Ki67 expression, and recruited CD11b-positive cells in the local tumor, inhibiting tumor growth and increasing the survival of tumor-bearing mice.</p> <p>Conclusions</p> <p>These results indicate that MSCs migrate to the tumor site in a time-dependent manner and could be an effective platform for the targeted delivery of CRAd and the amplification of tumor killing effects.</p
    • …
    corecore