130 research outputs found

    Mechanical implementation of kinematic synergy for continual grasping generation of anthropomorphic hand

    Get PDF
    The synergy-based motion generation of current anthropomorphic hands generally employ the static posture synergy, which is extracted from quantities of joint trajectory, to design the mechanism or control strategy. Under this framework, the temporal weight sequences of each synergy from pregrasp phase to grasp phase are required for reproducing any grasping task. Moreover, the zero-offset posture has to be preset before starting any grasp. Thus, the whole grasp phase appears to be unlike natural human grasp. Up until now, no work in the literature addresses these issues toward simplifying the continual grasp by only inputting the grasp pattern. In this paper, the kinematic synergies observed in angular velocity profile are employed to design the motion generation mechanism. The kinematic synergy extracted from quantities of grasp tasks is implemented by the proposed eigen cam group in tendon space. The completely continual grasp from the fully extending posture only require averagely rotating the two eigen cam groups one cycle. The change of grasp pattern only depends on respecifying transmission ratio pair for the two eigen cam groups. An illustrated hand prototype is developed based on the proposed design principle and the grasping experiments demonstrate the feasibility of the design method. The potential applications include the prosthetic hand that is controlled by the classified pattern from the bio-signal

    Climate change impact on China food security in 2050

    Get PDF
    Climate change is now affecting global agriculture and food production worldwide. Nonetheless the direct link between climate change and food security at the national scale is poorly understood. Here we simulated the effect of climate change on food security in China using the CERES crop models and the IPCC SRES A2 and B2 scenarios including CO2 fertilization effect. Models took into account population size, urbanization rate, cropland area, cropping intensity and technology development. Our results predict that food crop yield will increase +3-11 % under A2 scenario and +4 % under B2 scenario during 2030-2050, despite disparities among individual crops. As a consequence China will be able to achieve a production of 572 and 615 MT in 2030, then 635 and 646 MT in 2050 under A2 and B2 scenarios, respectively. In 2030 the food security index (FSI) will drop from +24 % in 2009 to -4.5 % and +10.2 % under A2 and B2 scenarios, respectively. In 2050, however, the FSI is predicted to increase to +7.1 % and +20.0 % under A2 and B2 scenarios, respectively, but this increase will be achieved only with the projected decrease of Chinese population. We conclude that 1) the proposed food security index is a simple yet powerful tool for food security analysis; (2) yield growth rate is a much better indicator of food security than yield per se; and (3) climate change only has a moderate positive effect on food security as compared to other factors such as cropland area, population growth, socio-economic pathway and technology development. Relevant policy options and research topics are suggested accordingly

    Aerodynamic Analysis and Optimization of Gliding Locust Wing Using Nash Genetic Algorithm

    Get PDF
    Natural fliers glide and minimize wing articulation to conserve energy for endured and long range flights. Elucidating the underlying physiology of such capability could potentially address numerous challenging problems in flight engineering. This study investigates the aerodynamic characteristics of an insect species called desert locust (Schistocerca gregaria) with an extraordinary gliding skills at low Reynolds number. Here, locust tandem wings are subjected to a computational fluid dynamics (CFD) simulation using 2D and 3D Navier-Stokes equations revealing fore-hindwing interactions, and the influence of their corrugations on the aerodynamic performance. Furthermore, the obtained CFD results are mathematically parameterized using PARSEC method and optimized based on a novel fusion of Genetic Algorithms and Nash game theory to achieve Nash equilibrium being the optimized wings. It was concluded that the lift-drag (gliding) ratio of the optimized profiles were improved by at least 77% and 150% compared to the original wing and the published literature, respectively. Ultimately, the profiles are integrated and analyzed using 3D CFD simulations that demonstrated a 14% performance improvement validating the proposed wing models for further fabrication and rapid prototyping presented in the future study

    A Bioinspired Airfoil Optimization Technique Using Nash Genetic Algorithm

    Get PDF
    Natural fliers glide and minimize wing articulation to conserve energy for endured and long range flights. Elucidating the underlying physiology of such capability could potentially address numerous challenging problems in flight engineering. However, primitive nature of the bioinspired research impedes such achievements, hence to bypass these limitations, this study introduces a bioinspired non-cooperative multiple objective optimization methodology based on a novel fusion of PARSEC, Nash strategy, and genetic algorithms to achieve insect-level aerodynamic efficiencies. The proposed technique is validated on a conventional airfoil as well as the wing crosssection of a desert locust (Schistocerca gregaria) at low Reynolds number, and we have recorded a 77% improvement in its gliding ratio

    Towards locust-inspired gliding wing prototypes for micro aerial vehicle applications

    Get PDF
    In aviation, gliding is the most economical mode of flight explicitly appreciated by natural fliers. They achieve it by high-performance wing structures evolved over millions of years in nature. Among other prehistoric beings, locust (Schistocerca gregaria) is a perfect example of such natural glider capable of endured transatlantic flights that could inspire a practical solution to achieve similar capabilities on micro aerial vehicles. This study investigates the effects of haemolymph on the flexibility of several flying insect wings further showcasing the superior structural performance of locusts. However, biomimicry of such aerodynamic and structural properties is hindered by the limitations of modern as well as conventional fabrication technologies in terms of availability and precision, respectively. Therefore, here we adopt finite element analysis (FEA) to investigate the manufacturing-worthiness of a 3D digitally reconstructed locust tandem wing, and propose novel combinations of economical and readily-available manufacturing methods to develop the model into prototypes that are structurally similar to their counterparts in nature while maintaining the optimum gliding ratio previously obtained in the aerodynamic simulations. Latter is evaluated in the future study and the former is assessed here via an experimental analysis of the flexural stiffness and maximum deformation rate. Ultimately, a comparative study of the mechanical properties reveals the feasibility of each prototype for gliding micro aerial vehicle applications

    Highly Efficient and Selective Photocatalytic Nonoxidative Coupling of Methane to Ethylene over Pd-Zn Synergistic Catalytic Sites

    Get PDF
    Photocatalytic nonoxidative coupling of CH4 to multicarbon (C2+) hydrocarbons (e.g., C2H4) and H2 under ambient conditions provides a promising energy-conserving approach for utilization of carbon resource. However, as the methyl intermediates prefer to undergo self-coupling to produce ethane, it is a challenging task to control the selective conversion of CH4 to higher value-added C2H4. Herein, we adopt a synergistic catalysis strategy by integrating Pd-Zn active sites on visible light-responsive defective WO3 nanosheets for synergizing the adsorption, activation, and dehydrogenation processes in CH4 to C2H4 conversion. Benefiting from the synergy, our model catalyst achieves a remarkable C2+ compounds yield of 31.85 mu mol center dot g-1 center dot h-1 with an exceptionally high C2H4 selectivity of 75.3% and a stoichiometric H2 evolution. In situ spectroscopic studies reveal that the Zn sites promote the adsorption and activation of CH4 molecules to generate methyl and methoxy intermediates with the assistance of lattice oxygen, while the Pd sites facilitate the dehydrogenation of methoxy to methylene radicals for producing C2H4 and suppress overoxidation. This work demonstrates a strategy for designing efficient photocatalysts toward selective coupling of CH4 to higher value-added chemicals and highlights the importance of synergistic active sites to the synergy of key steps in catalytic reactions.Peer reviewe

    Design and implementation of cloud platform for nuclear accident simulation

    Get PDF
    Introduction: To meet the multi-user, cross-time-and-space, cross-platform online demand of work, and professional training teaching in nuclear reactor safety analysis under the normalization of Coronavirus Disease 2019.Method: Taking the nuclear accident simulation software PCTRAN as an example, this study adopts cloud computing technology to build the NasCloud, a nuclear accident simulation cloud platform based on Browser/Server architecture, and successfully realizes multi-user, cross-time-and-space, cross-platform applications. Targeting the AP1000, a pressurized water reactor nuclear power plant, the simulation of cold-leg Small Break Loss of Coolant Accident and cold-leg Large Break Loss of Coolant Accident were carried out to verify the correctness of the NasCloud’s accident simulation function.Results: The result shows that the simulation functions and results of the NasCloud in multi-terminal are consistent with the single version of PCTRAN. At the same time, the platform has high scalability, concurrency and security characteristics.Discussion: Therefore, the nuclear accident simulation cloud platform built in this study can provide solutions for the work and training of nuclear reactor safety analysis, and provide reference for other engineering design and simulation software cloud to computing transformation

    Acute combined effects of concurrent physical activities on autonomic nervous activation during cognitive tasks

    Get PDF
    Backgrounds: The validity of heart rate variability (HRV) has been substantiated in mental workload assessments. However, cognitive tasks often coincide with physical exertion in practical mental work, but their synergic effects on HRV remains insufficiently established. The study aims were to investigate the combined effects of cognitive and physical load on autonomic nerve functions.Methods: Thirty-five healthy male subjects (aged 23.5 ± 3.3 years) were eligible and enrolled in the study. The subjects engaged in n-back cognitive tasks (1-back, 2-back, and 3-back) under three distinct physical conditions, involving isotonic contraction of the left upper limb with loads of 0 kg, 3 kg, and 5 kg. Electrocardiogram signals and cognitive task performance were recorded throughout the tasks, and post-task assessment of subjective experiences were conducted using the NASA-TLX scale.Results: The execution of n-back tasks resulted in enhanced perceptions of task-load feelings and increased reaction times among subjects, accompanied by a decline in the accuracy rate (p < 0.05). These effects were synchronously intensified by the imposition of physical load. Comparative analysis with a no-physical-load scenario revealed significant alterations in the HRV of the subjects during the cognitive task under moderate and high physical conditions. The main features were a decreased power of the high frequency component (p < 0.05) and an increased low frequency component (p < 0.05), signifying an elevation in sympathetic activity. This physiological response manifested similarly at both moderate and high physical levels. In addition, a discernible linear correlation was observed between HRV and task-load feelings, as well as task performance under the influence of physical load (p < 0.05).Conclusion: HRV can serve as a viable indicator for assessing mental workload in the context of physical activities, making it suitable for real-world mental work scenarios
    corecore