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Backgrounds: The validity of heart rate variability (HRV) has been substantiated in
mental workload assessments. However, cognitive tasks often coincide with
physical exertion in practical mental work, but their synergic effects on HRV
remains insufficiently established. The study aims were to investigate the
combined effects of cognitive and physical load on autonomic nerve functions.

Methods: Thirty-five healthy male subjects (aged 23.5 ± 3.3 years) were eligible
and enrolled in the study. The subjects engaged in n-back cognitive tasks (1-back,
2-back, and 3-back) under three distinct physical conditions, involving isotonic
contraction of the left upper limb with loads of 0 kg, 3 kg, and 5 kg.
Electrocardiogram signals and cognitive task performance were recorded
throughout the tasks, and post-task assessment of subjective experiences
were conducted using the NASA-TLX scale.

Results: The execution of n-back tasks resulted in enhanced perceptions of task-
load feelings and increased reaction times among subjects, accompanied by a
decline in the accuracy rate (p < 0.05). These effects were synchronously
intensified by the imposition of physical load. Comparative analysis with a no-
physical-load scenario revealed significant alterations in the HRV of the subjects
during the cognitive task under moderate and high physical conditions. The main
features were a decreased power of the high frequency component (p < 0.05)
and an increased low frequency component (p < 0.05), signifying an elevation in
sympathetic activity. This physiological response manifested similarly at both
moderate and high physical levels. In addition, a discernible linear correlation was
observed between HRV and task-load feelings, as well as task performance under
the influence of physical load (p < 0.05).

Conclusion: HRV can serve as a viable indicator for assessing mental workload in
the context of physical activities, making it suitable for real-world mental
work scenarios.
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1 Introduction

In specific occupations such as airplane pilots and automobile
drivers, mental workload constitutes a crucial risk factor that
imperils personnel safety and demands careful consideration.
Elevated mental load during tasks can precipitate mental fatigue,
which eventually leads to an escalation in human errors and safety
accidents (Jacquet et al., 2020; Ramírez-Moreno et al., 2021).
Statistics indicate a direct correlation between driver fatigue and
20% of traffic accidents (Wilson et al., 2020). Conversely, insufficient
mental workload may compromise alertness levels, hindering the
timely mobilization of brain resources and potentially resulting in an
accident. Real-time monitoring of the mental load level of operators
during tasks holds practical significance, enabling the prompt and
accurate identification of mental status and effectively minimizing
the risk of accidents.

Current mental workload assessment methods, encompassing
subjective and objective approaches, have distinct advantages and
drawbacks. Subjective methods, such as the NASA task load index
(NASA-TLX) (Wilson et al., 2021) and fatigue assessment scale
(Ramírez-Moreno et al., 2021), use rating scales to evaluate mental
workload at specific moments but face challenges in real-time
monitoring due to questionnaire interruptions. Maintaining the
natural working environment and operators’ activities is crucial,
but subjective methods may compromise task execution
(Albuquerque et al., 2020). In contrast, objective measurement
methods, including electroencephalogram (EEG) (Zhang et al.,
2021; Chitti et al., 2021; Wriessnegger et al., 2021), eye
movement features (represented by blink, pupil diameter and
saccade) (Bafna and Hansen, 2021), heart rate variability (HRV)
(Burlacu et al., 2021) and postural stability indicators (Cheng et al.,
2018; Sun et al., 2019), rely on biological signals and offer promising
avenues for effective and objective mental workload assessment
without disrupting tasks. These approaches pave the way for
more precise and real-time monitoring, ensuring a
comprehensive understanding of mental workload dynamics
during various activities.

Recent progress in wearable technology has revolutionized the
acquisition of biological signals in real work scenarios. Advanced
features such as wireless transmission, miniaturized amplifiers
(Wascher et al., 2023), and dry electrodes (Ramírez-Moreno
et al., 2021) have enhanced the application of highly portable
EEG head-mounted devices, proving crucial for research in real
mobile environments. Technologies like the ballistocardiogram
(BCG), using a fiber sensor cushion (Xu et al., 2021) or
photoplethysmogram (PPG) integrated into a helmet (Wilson
et al., 2020) have enabled the simultaneous collection of
biological signals alongside the primary task, offering the
capability to capture changes in the operators’ functional status
before an alteration in task performance occurs. With superior
temporal resolution compared to subjective methods, these
approaches serve as pivotal tools for real-time mental workload
assessment during tasks.

Comparing ECG to portable EEG acquisition technology, the
former exhibits significantly enhanced anti-interference capabilities
(Wang et al., 2016; Dai et al., 2021; Klug and Gramann, 2021; Teng
et al., 2021), showing efficacy in evaluating mental fatigue within
laboratory settings. Studies have demonstrated a correlation

between ECG signals and psychomotor vigilance task (PVT)
performance, as well as the effectiveness of HRV indices in
assessing cognitive task-related errors. Leveraging sensitive
features extracted from ECG, algorithms like learning vector
quantization and random forest tree classifiers achieve impressive
accuracy in identifying fatigue states, underscoring HRV as a
potential indicator for evaluating worker fatigue (Chua et al.,
2012; Zhao et al., 2012; Pan et al., 2021; Xu et al., 2021; Takada
et al., 2022).

However, the authentic mental work environment, dominated
by a cognitive load (CL), is frequently accompanied by physical
activities, stress, pressure and other non-cognitive factors, all of
which can alter the characteristics of biological signals. Currently,
researchers have initiated investigations into the impact of increased
physical load (PL), stress and other factors during cognitive tasks on
physiological and psychological functions. For instance, significant
changes in EEG-related indexes were observed when subjects
engaged in a cognitive task while cycling (Xu et al., 2018). In the
study by Zink and others, subjects were tasked with performing a
three-level Oddball auditory task while cycling. EEG analysis
showed a decrease in the P300 component of event-related
potentials during physical activities in unrestrained conditions
(Zink et al., 2016). Blons research group found that vagus nerve
activities and entropy indexes increased in the cognitive task alone,
while the entropy index of HRV decreased with the addition of stress
factors (Blons et al., 2019). Confounding factors in a real work
scenario may disrupt the balance of sympathetic and
parasympathetic nerve activity, resulting in substantial variations
in sensitivity (47.1%–95%) and specificity (74.6%–98%) in driving
fatigue recognition parameters based on HRV indicators across
different studies (Burlacu et al., 2021).

While mental workload in most existing research protocols is
induced by sleep deprivation (Cheng et al., 2021), continuous
cognitive tasks such as an n-back task (Karthikeyan et al., 2021;
Wriessnegger et al., 2021) and a Stroop task (Nikooharf Salehi et al.,
2022), these protocols often overlook the role of non-cognitive
variables, particularly physical factors. The real-time evaluation of
mental workload based on ECG signals is undoubtedly influenced by
dynamics. Because the working process of mental workers is not
static, then PL becomes an important non-cognitive factors.
Therefore, the aims of this study were to explore the changes in
ECG signals during different PL and CL under a background of
dynamic tasks.

2 Materials and methods

2.1 Subjects

Thirty-five male subjects, aged between 20 and 32 years (mean
23.5 ± 3.3 years), were enrolled in the study. Inclusion criteria were:
being right-handed; absence of diseases and injury affecting physical
activities in the past 3 months; and no recent use of alcohol and
specific medications. Based on self-reporting, subjects had a
minimum of ≥6 h of sleep per day during the week preceding the
study experiments. Additionally, subjects willingly provided written
informed consent and agreed not to withdraw from the ongoing
study for subjective reasons or concerns.
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2.2 Experimental tasks

2.2.1 Design of cognitive load
In the current study, the n-back working memory task program

introduced by Wriessnegger et al. (2021), was applied to induce
mental workload and fatigue states in the study subjects. At the
initiation of the n-back task, subjects received instructions, followed
by a sequence of letters. Their task was determined whether the
current presented letter matched the one shown n letters prior,
essentially identifying the target letter in the sequence. The criteria
for the target letter were established such that if the current letter
matched the one presented n letter before, it was considered the
target letter. Three variation of n-back tasks (1-back, 2-back, and 3-
back) with differing difficulty levels were employed. Each trial
consisted of 20 letters, including 5 target letters. Prior to the trial,
a 2-s instruction informed subjects about the type of n-back task to
be performed. Subsequently, each trial lasted 40 s, with each letter
displayed for 0.5 s and an interval of 1.5 s. Subjects were required to
press the symbol “↑” symbol on the keyboard upon recognizing the
target letter. Following the completion of a trial, subjects had a 6-s
break. Thus, one trial encompassed 50 s. To complete each run of a
specific n-back task type, a total of 6 consecutive trials were
conducted, taking approximately 5 min.

2.2.2 Design of physical load
In these experiments, isotonic contraction of the left upper limb

was used to simulate the PL encountered during mental work,
ensuring no interfere with n-back tasks performed using the right
hand. Contractile resistance was introduced by holding a dumbbell,
categorized into three levels of PL: no PL (none, 0 kg); moderate PL
(medium, 3 kg); and a high PL (high, 5 kg). When applying PL to the
subject, the preparation posture involved a 90-degrees flexion of the
left arm. During lifting, the forearm was maintained an angle <45°
from the upper arm, indicating effective contraction. The lift
frequency during the cognitive task was once every 2 s, aligning
with the letter presentation frequency of n-back tasks.

2.3 Assessment of task load

2.3.1 Subjective scale assessment
The NASA-TLX was used to evaluate the experiences of subjects

across six dimensions: mental demand, physical demand, time
demand, self-performance, effort level and the frustration level.
Subjects self-evaluated their feelings on a 21-point scale for each
dimension. The six dimensions were combined into 15 pairs, and
subjects were tasked with selecting the more significant factor within
each pair. Subsequently, weights ranging from 1/21 to 6/21 were
assigned based on the frequency of selections, ordered from the
lowest to the highest. The total score was then calculated.

2.3.2 HRV based on ECG data
In this study, the Dutch Spirit multi-channel biofeedback system

was used to record ECG data at a sampling frequency of 256 Hz
during the task. Initially, municipal electricity interference,
myoelectric interference and baseline drift noise in ECG signal
were mitigated using median filtering and moving average
methods. Subsequently, the difference threshold method was used

to extract the peak value of QRS, yielding the RR interval. To ensure
the accuracy of RR interval calculation, outlier values were identified
and screened using the fill outliers’ function in Matlab software,
followed by linear interpolation between adjacent non-outlier
values. This processed resulted in the acquisition of a
preprocessed RR interval sequence from the raw ECG signal. The
HRV characteristics of each stage were extracted based on the
RR interval.

The time domain characteristic indices were computed through
time series analysis of the RR interval, including: (1) mean heart rate
(meanHR); (2) standard deviation of normal-to-normal beats
(SDNN), representing the overall profile of HRV by calculating
the standard deviation of all RR intervals within a specific time; (3)
the number and percentage of difference between adjacent RR
intervals exceeding 50 ms (NN50, pNN50), sensitive indicators of
vagus nerve activity, with higher values signifying increased vagus
nerve excitability; and (4) root mean square difference (RMSSD); the
root mean square value of the differences between adjacent RR
intervals, reflecting the high-frequency component of HRV, where
higher values indicate greater vagal tone.

Autoregressive models were used in this study to analyze the
frequency domain characteristics of HRV. The power spectrum of
the RR interval sequence was categorized into three primary
frequency bands: high frequency band (HF: 0.150–0.400 Hz), low
frequency band (LF: 0.040–0.150 Hz), and very low frequency band
(VLF: 0.003–0.040 Hz). Key frequency-domain parameters
included: (1) VLF, LF and HF, representing the absolute power
density in VLF, LF, and HF bands, respectively. LF indicates the level
of sympathetic nerves activity, while HF reflects the regulatory
strength of the vagus nerve. Total power density (Total) is the
sum of VLF, LF and HF, providing a measure of overall HRV; (2) the
LF/HF ratio, signifies the balance between sympathetic and vagal
nerve activity; (3) the normalized low-frequency power (nLF) is the
value of LF relative to the sum of LF and HF, indicating the relative
levels of sympathetic nerves activity; and (4) normalized HF power
(nHF), reflecting the degree of vagal regulation.

2.3.3 Cognitive performance
The outcomes derived from the n-back task employed in this

study primarily fall into two categories: (1) Reaction time (RT) for
identifying the target letter, encompassing mean RT (MRT),
standard deviation of RT (SDRT), maximum RT (maxRT), and
minimum RT (minRT); (2) Performance indicators consisted of the
ratio of correct reactions (CNR), the ratio of missing reactions
(MNR) and ratio of incorrect reactions (WNR).

2.4 Experimental procedure

In this study, two independent variables (CL and PL) were
established and implemented through a repeated measurement
design with cross-control within the group (Figure 1).
Specifically, CL featured three levels (1-back, 2-back, 3-back),
while PL also had three levels (None, Medium, High). The
experimental protocol unfolded across three stages, each with
distinct PL levels, and there was a 1-week interval between
stages. First, the ECG signals were collected from subjects in a
resting state before each stage, serving as the baseline data. The three
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electrodes of the ECG were placed, respectively beneath the
midpoint of the left clavicle, beneath the midpoint of the right
clavicle, and slightly to the left of the xiphoid process.

Subsequently, subjects sequentially performed n-back cognitive
tasks of varying difficulty levels, with concurrent recording of ECG
signals. Following each run of n-back tasks, the NASA-TLX index
was used to evaluate the subjective task load.

When conducting the n-back tasks across three difficulty levels
(1-back, 2-back, 3-back), a crossover design within the group was
implemented to avoid the effect of task orders (Figure 1). For
example, under the no-physical level condition (none), all
subjects were equitably and randomly allocated into three sub-
groups (group 1, group 2, and group 3) to execute the n-back
task following a pre-designed sequence. Group 1 underwent tasks in
the order of 1-back, 2-back and 3-back; group 2 performed cognitive
tasks in the sequence of 2-back, 3-back and 1-back; group 3 executed
tasks in the order of 3-back, 1-back, and 2-back. A 10-min interval
was allowed between successive n-back tasks. A similar task order
protocol was applied to subjects in the medium and high physical
level conditions, as in the no-physical condition.

2.5 Statistical analysis

All statistical analyses were performing using SPSS ver. 23.0. In
cases where the collected data exhibited a normal distribution and
homogeneity of variance, repeated measures analysis of variance
(rmANOVA) and a paired t-test were used for multiple
comparisons. If there were assumptions that were not met, the
Friedman test and Wilcoxon signed rank test were employed. First,

the analysis focused on examining differences of subjective feelings
and task performance across n-back cognitive tasks to assess mental
load levels. Subsequently, the impact of PL on HRV features were
analyzed. Finally, Spearman’s rank correlation was used to evaluate
the correlation between HRV and subjective feelings, as well as task
performance. A significance of p < 0.05 was considered to indicative
of a statistically significant finding.

3 Results

3.1 Mental load level induced by n-back
tasks under PL

The main effects of CL and PL on NASA-TLX score and task
performance were determined through rmANOVA. As the difficulty
of the n-back task increased, the subjective task load demonstrated a
significant rise (mental demand: F = 44.800, p < 0.001; effort: F =
12.412, p < 0.001; frustration level: F = 24.350, p < 0.001).
Additionally, an increase in PL resulted in a significant elevation
of the task load level, particularly in time demand (F = 5.026, p =
0.007) and effort (F = 11.078, p < 0.001). Similarly, the cognitive
tasks had a significant impact on subjects’ reaction time, leading to a
significant prolongation (MRT: F = 58.045, p < 0.001; SDRT: F =
90.316, p < 0.001), along with a remarkable decrease in the rate of
correct responses (CNR: F = 73.439, p < 0.001). PL also influenced
subjects’ reaction times, resulting in a significant prolongation
(MRT: F = 3.924, p = 0.021; SDRT: F = 4.770, p = 0.009) and a
decrease in CNR (F = 3.984, p = 0.020) (See
Supplementary Material).

FIGURE 1
Experimental design and flow chart. Run1, Run2, and Run3 represent n-back tasks with three difficulty levels running in a preset order, respectively.
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3.2 Combined effects of PL with CL on
autonomic nervous activity

The autonomic nervous system exhibited similar activity across
different PL groups (See Supplementary Material). Under a low CL
condition (1-back), PL significantly reduced SDNN (χ2 = 21.063, p <
0.001), NN50 (χ2 = 12.110, p = 0.002), pNN50 (χ2 = 17.055, p <
0.001) and RMSSD (χ2 = 12.000, p = 0.002), while meanHR
obviously increased (χ2 = 40.268, p < 0.001). In comparison to
no PL (none), subjects’ SDNN (Wilcoxon signed ranks test,
Z = −4.282, p < 0.001), NN50 (Z = −3.413, p = 0.001), pNN50
(Z = −3.805, p < 0.001), RMSSD (Z = −3.272, p = 0.001) and
meanHR (Z = −3.572, p < 0.001) were all significantly increased at
medium PL (Figure 2). At high PL, the subjects’ pNN50 (Z = −2.281,
p = 0.023) was significantly decreased, while meanHR (Z = −4.544,
p < 0.001) significantly increased. Compared with medium PL,
meanHR (Z = −3.331, p < 0.001) significantly increased. In
addition, PL significantly reduced the power density value of
HRV, including VLF (χ2 = 21.438, p < 0.001), LF (χ2 = 10.938,

p = 0.004), HF (χ2 = 9.750, p = 0.008) and Total (χ2 = 10.563, p =
0.005), all of which decreased significantly. Compared to no PL, VLF
(Z = −3.160, p = 0.002), LF (Z = −3.160, p = 0.002), HF (Z = −3.141,
p = 0.002), Total (Z = −3.403, p = 0.001), nHF (Z = −2.151, p = 0.032)
decreased significantly at medium PL, while nLF (Z = −2.151, p =
0.032) increased significantly. At high PL, VLF (Z = −4.245, p <
0.001) was further reduced.

The effects of PL on HRV under higher CL (2-back and 3-back)
mirrored that observed under low CL (1-back). In the moderate CL
condition (2-back), PL significantly decreased SDNN (χ2 = 6.750, p =
0.034), NN50 (χ2 = 14.736, p = 0.001), pNN50 (χ2 = 16.528, p <
0.001) and RMSSD (χ2 = 11.313, p = 0.003), while the meanHR
increased (χ2 = 43.938, p < 0.001). Furthermore, PL also significantly
reduced the absolute values of HF (χ2 = 12.000, p = 0.002) and Total
(χ2 = 7.000, p = 0.030) during cognitive tasks. As shown in Figure 3,
compared to no PL (none), time-domain and frequency-domain
features of HRV underwent significant changes under the medium
PL condition, including SDNN (Z = −2.122, p = 0.034), NN50
(Z = −3.245, p = 0.001), pNN50 (Z = −3.282, p = 0.001), RMSSD

FIGURE 2
Changes of HRV features under different PL in the low CL condition. “None,” “Medium” and “High” respectively show the physical level during tasks.
*p < 0.05, **p < 0.01, ***p < 0.001. Data are plotted themean ± SEM. aTotal, Absolute value of total power density; CL, cognitive load; LF/HF, ratio of low-
frequency and high frequency power; meanHR, mean heart rate; nHF, normalized high frequency power; nLF, normalized low-frequency power; PL,
physical load; pNN50, percentage of the difference between adjacent RR intervals >50 ms; RMSSD, root mean square difference; SDNN, standard
deviation of normal to normal beats.
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(Z = −2.655, p = 0.008), LF/HF (Z = −2.580, p = 0.010), and the
proportion of low frequencies (nLF) (Z = −2.188, p = 0.029). These
latter changes in HRV were not obvious under the high
PL condition.

In the high CL condition (3-back), subjects exhibited a
significant decrease in SDNN (χ2 = 6.063, p = 0.048), NN50 (χ2 =
8.368, p = 0.015), pNN50 (χ2 = 9.424, p = 0.009) and RMSSD (χ2 =
7.313, p = 0.026) with increasing PL, along with a significant rise in
meanHR (χ2 = 26.313, p < 0.001). The reduction in subjects’HF (χ2 =
7.938, p = 0.019), Total (χ2 = 6.750, p = 0.034), nHF (χ2 = 6.813, p =
0.033), and the increase in the ratio of LF/HF (χ2 = 9.250, p = 0.010)
and nLF (χ2 = 6.813, p = 0.033) were induced by increasing PL
during the cognitive task. Figure 4 shows that certain HRV
parameters changed noticeably at medium PL, including a
decrease in NN50 (Z = −2.469, p = 0.014), pNN50 (Z = −2.739,
p = 0.006) and the proportion of HF (nHF: Z = −2.394, p = 0.017),
coupled with an increase in the LF/HF ratio (Z = −3.216, p = 0.001)
and nLF (Z = −2.394, p = 0.017) (Figure 4). No significant difference
was found between medium and high PL.

Regardless of the CL, these results suggested that subjects’HR
increased with an elevation in PL, while the absolute energy in
different frequency bands decreased. The relative proportion of

the frequency value increased, while the proportion of
HF decreased.

3.3 Correlation of HRV with CL under the
effects of PL

Spearman’s correlation analysis revealed a significant
relationship between HRV indexes under different CL conditions
and subjective feelings in the absence of PL (none). In Table 1, the
NASA-TLX total score exhibited a significant positive correlation
with the LF/HF ratio (r = 0.204, p = 0.049) and nLF (r = 0.226, p =
0.003), and a negative correlation with aTotal (r = −0.272, p = 0.008),
nHF (r = −0.226, p = 0.003), SDNN (r = −0.324, p = 0.002), pNN50
(r = −0.260, p = 0.012) and RMSSD (r = −0.297, p = 0.004). Under
the medium PL condition, the meanHR showed a positive
correlation with the NASA-TLX score (r = 0.210, p = 0.044).
Furthermore, the RT for a cognitive task exhibited a positive
correlation with the LF/HF ratio (r = 0.223, p = 0.032) and nLF
(r = 0.205, p = 0.049), while showing a negative correlation with nHF
(r = −0.205, p = 0.049). In the presence of high PL, significant
correlations were found between HRVwith subjective workload. For

FIGURE 3
Changes of HRV features under different PL in the moderate CL condition. *p < 0.05, **p < 0.01, ***p < 0.001. Data are plotted as the mean ± SEM.
CL, cognitive load; PL, physical load.
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example, the NASA-TLX total score revealed a significant
correlation between LF/HF (r = 0.271, p = 0.009), nLF (r =
0.270, p = 0.009) and nHF (r = −0.270, p = 0.009).

4 Discussion

In the present study, the HRV of subjects were investigated
during cognitive tasks under moderate and high physical conditions,
and the results showed significant alterations compared to scenarios
without physical load. Additionally, a clear linear correlation was
found between HRV and task-load perceptions, as well as task
performance under the influence of physical load (p < 0.05).

Researchers could approach the real-time monitoring of mental
workload during dynamic tasks by considering the interaction
between various physiological loads and cognitive tasks. Previous
experimental paradigms employed to induce mental workload often
overlooked the impact of non-cognitive factors (PL, stress, etc.)
within an authentic dynamic work scenario. Cheng et al.
investigated postural control changes in a mentally fatigue state
induced by 36 h of sleep deprivation (Cheng et al., 2018).
Karthikeyan et al. employed a 1-h visuo-spatial 2-back task to
study the effects of anodal transcranial direct current stimulation
on working memory under fatigue (Karthikeyan et al., 2021).

Additionally, a 60 min Stoop color-word task (Nikooharf Salehi
et al., 2022) and a flight simulator task (Pan et al., 2021) were used to
induce a mental state of fatigue. While these models may be suitable
for scenarios involving static operators, they might not be applicable
to actual dynamic settings, such as those encountered by pilots,
firefighters and first responders. Therefore, in the present study,
isotonic contraction of the upper limbs of subjects at various
resistances were used to simulate the PL that dynamic operators
encounter during mental work.

Regardless of the impact of PL, the n-back tasks of varying
difficulties in this study elicited distinct levels of mental load.
Evaluation through the NASA-TLX scale showed significant
increases in psychological needs, time demand, effort and
frustration levels, coupled with a significant decrease in self-
performance. The n-back task performance exhibited adverse
effects, including the extension of the MRT and maxRT, an
increase in wrong responding rates, and a decrease in correct
rates. These outcomes are in good agreement with the findings of
previous study (Wriessnegger et al., 2021). To induce diverse levels
of mental workload,Wriessnegger et al. instructed subjects to engage
in three types of n-back tasks (1-back, 2-back, and 3-back) for three
trials (20 min each, 60 min in total) (Wriessnegger et al., 2021).
Moreover, this study also found that PL could further enhance the
subjective perceptions on task loads when subjects undertook

FIGURE 4
Changes of HRV features under different PL in high CL condition. *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as the mean ± SEM.
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n-back cognitive tasks. This result is consistent with previous
outcomes, as demonstrated in the study by Albuquerque et al.,
where the mental demand scores of NASA-TLX further increased
when subjects performed multi-cognitive tasks under the effect of
PLs (Albuquerque et al., 2020).

Although our findings, indicating that PL can significantly
increase the RT of cognitive tasks and reduce task performance,
may appear somewhat inconsistent with previous studies, it is
noteworthy that beneficial effects of physical activities have been
reported. Most previous studies have demonstrated significantly
faster response times during cognitive tasks (Zhu et al., 2021;
Engeroff et al., 2022) and improved accuracy rates (Gao et al.,
2021; Zheng et al., 2022) following physical activities or exercise
interventions, such as cycling. Upon analyzing the experimental
conditions, it became evident that the positive effects on works’
cognitive ability typically manifest after acute physical exercises, a
condition distinct from our study.

The concurrent presence of PL has been associated with a
reduction in EEG activity (Xu et al., 2018) and ERP component
amplitudes (P300 wave) (Zink et al., 2016) during the performance of
cognitive tasks. Studies utilizing functional near infrared
spectroscopy have also suggested that while acute aerobic exercise
improves working memory performance, activities in the bilateral
frontal pole area, dorsolateral prefrontal cortex (dlPFC) and other
regions may decrease (Zheng et al., 2022). However, after acute
exercise, the degree of activation of dlPFC (Fujihara et al., 2021) and
its correlation with behavioral performance were enhanced (Zhang
et al., 2021). Taken together, these results suggest that improvement
of behavioral performance after physical activity may stem from the
compensatory activation of relevant brain areas after exercise.

In the absence of influence of PL, subjects’ HRV features
underwent significant changes as the cognitive task load
increased. The autonomic nervous system, consisting of the
sympathetic and parasympathetic nervous systems, regulates the
arousal level of workers and is closely related to fluctuation in HR
(Maiorana et al., 2022; Garis et al., 2023). The substantial reduction
in the high-frequency value of HRV and the low-frequency value
may be indicative of increased activity in the sympathetic nervous
system, and vice versa. Studies have reported that an increase in
mental workload or the onset of mental fatigue leads to activation of
the sympathetic nervous system (Wehrens et al., 2012; Chen et al.,
2013). However, it is essential to acknowledge that physical activity
has a significant influence on the autonomic nervous system.
Alfonso et al. conducted a study involving 123 HRV recordings
in the morning and 66 recordings of training intensity over a 6-week
period with 5 recreational road cyclists. The results indicated that
the higher training intensity on a given day correlated with a lower
normalized HF and higher LF/HF values the next morning (Alfonso
and Capdevila, 2022). It is plausible that under the influence of PL,
sympathetic nervous system activity increases and vagal
activity decreases.

Under the combined condition of a cognitive task and physical
factors in our study, HRV also exhibited significant changes with an
increase in PL, wherein the HF component of HRV decreased, and
the LF component increased. These results suggest a decrease in
vagal activity and an increase in sympathetic nervous system
activity, aligning with observations made by previous researchers.
Dallaway et al. studied the effects of mental fatigue on grip strength
training by using a Stroop color classification task (with response
inhibition) and n-back memory update task (without response

TABLE 1 Correlation coefficients between HRV and cognitive task load under the influence of PL.

HRV None physical level Medium physical level High physical level

Subjective
feelings

Mean reaction
time

Subjective
feelings

Mean reaction
time

Subjective
feelings

Mean reaction
time

aVLF −.275** −0.198 −0.042 0.028 −0.035 −0.042

aLF −.240* −0.071 −0.076 0.136 −0.069 −0.127

aHF −.329** −0.016 −0.082 0.035 −0.182 −0.116

aTotal −.272** −0.105 −0.053 0.08 −0.122 −0.095

LF/HF .204* −0.100 −0.013 .223* .271** 0.028

nHF −.226* 0.092 0.004 −.205* −.270** −0.027

nLF .226* −0.092 −0.004 .205* .270** 0.027

SDNN −.324** −0.15 −0.023 0.095 −0.142 −0.146

NN50 −.228* −0.031 0.004 0.100 −0.171 −0.086

pNN50 −.260* −0.001 −0.034 0.08 −0.162 −0.087

RMSSD −.297** −0.045 −0.038 0.062 −0.156 −0.107

MeanHR 0.103 0.138 .210* −0.049 −0.121 0.022

Note: Spearman’s rho was used to determine the correlation between HRV, and task load. *p < 0.05, **p < 0.01.

aHF, absolute value of power density in high frequency band; aLF, absolute value of power density in low frequency band; aTotal, absolute value of total power density; aVLF, absolute value of

power density in very low frequency band; LF/HF, ratio of low-frequency and high frequency power; meanHR, mean heart rate; nHF, normalized high frequency power; nLF, normalized low-

frequency power; NN50, number and percentage of the difference between adjacent RR, intervals >50 ms; pNN50, percentage of the difference between adjacent RR, intervals >50 ms; RMSSD,

root mean square difference; SDNN, standard deviation of normal to normal beats.
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inhibition). They found that the Stroop and 2-back tasks elicited
higher HRs, lower HRV and greater fatigue compared to the control
task (Dallaway et al., 2022). During isometric contraction of the
quadriceps femoris while performing cognitive tasks, subjects’
sympathetic nervous system activity increased along with the
sense of muscle exertion (Chatain et al., 2019). However, in the
presence of PL, HRV did not exhibit statistically significant changes
when subjects performed cognitive tasks at different levels. Another
study that explored the cognitive task induced by smartphone use
during resistance exercise found no significant effect on HRV
(Fortes et al., 2022). These findings suggest that physical factors
may play a dominant role in the combined effect, thereby
attenuating the influence of CL on HRV.

Moreover, correlation analysis showed a liner relationship
between HRV indexes, subjective feelings, and cognitive
performance under the influence of PL during cognitive tasks.
The degree of correlation varied in our study with different levels
of PL. These results suggest that HRV remains a potential effective
indicator of task load in actual dynamic mental work scenarios when
combined with physical factors. Previous research also noted an
increase in the high-frequency component of HRV and enhanced
vagal activity when fatigue reached a critical level (Vaara et al., 2009;
Konishi et al., 2013). Thus, as the degree of mental fatigue intensifies,
the effects of CL and PLmay be opposing, potentially compromising
the evaluation validity of mental workload and fatigue states
based on HRV.

One limitation of the present study was the use of a repeated-
measures design to examine the primary effects of PL during
cognitive tasks. A within-subjects experimental paradigm was
applied when performing the n-back task under different PL
conditions to cancel the influence of individual differences. To
eliminate practicing effects, a 1-week interval between
conditioning sessions was implemented; however, the PL
condition was introduced later, potentially inducing an
adaptation phenomenon. This study did not explore the
validity of mental workload assessment based on ECG signals
under the combined effects of PL and CL. Receiver operating
curve analysis has indicated a good validity for fatigue assessment
models, even when considering the influence of PL. Assessment
models constructed by a random forest classifier showed average
area under the curve values exceeding 0.995 for the two-
classification mental workload method, based on features such
as EEG, skin temperature, galvanic skin response and blood
volume pulse features (Albuquerque et al., 2020). Further
studies are needed to investigate the effect of physical factors
on ECG-based evaluation models and their validity in assessing
mental workload.

5 Conclusion

This study adopted the combined experimental paradigm
involving CL and PL to simulate the characteristics of real
dynamic mental work scenarios. The observed increase in
subjects’ task-load perceptions and reaction times indicated an
increased level of mental workload. Concurrent PL during
cognitive tasks enhanced the reaction. Regarding the combined
effects of PL and CL on autonomic nervous system activity, PL

emerged as the dominant factor, marked by an elevation in the LF
component and a reduction in the HF component of HRV
features, with sympathetic nervous system excitation
contributing to this phenomenon. The combined effect adds
complexity to the real-time assessment and evaluation of
mental work based on the ECG. Additionally, the findings
highlighted that HRV can effectively reflect changes in
subjective feelings and task performance during mental work
under the effects of PL. It should be noted that the validity of HRV
under more demanding mental working conditions requires
further exploration. Our study offers preliminary evidence of
the evolving features of HRV under a mental workload, laying a
theoretical understanding for the accurate and real-time
assessment of the task-load level for mental workers in
authentic dynamic scenarios.
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