63 research outputs found

    N6-methyladenosine modification of viral RNA and its role during the recognition process of RIG-I-like receptors

    Get PDF
    N6‐methyladenosine (m6A) is the most abundant RNA chemical modification in eukaryotes and is also found in the RNAs of many viruses. In recent years, m6A RNA modification has been reported to have a role not only in the replication of numerous viruses but also in the innate immune escape process. In this review, we describe the viruses that contain m6A in their genomes or messenger RNAs (mRNAs), and summarize the effects of m6A on the replication of different viruses. We also discuss how m6A modification helps viral RNAs escape recognition by exogenous RNA sensors, such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), during viral invasion. Overall, the goal of our review is to summarize how m6A regulates viral replication and facilitates innate immune escape. Furthermore, we elaborate on the potential of m6A as a novel antiviral target

    PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice

    Get PDF
    H5N1 influenza viruses with high lethality are a continuing threat to humans and poultry. Recently, H5N1 high-pathogenicity avian influenza virus (HPAIV) has been shown to transmit through aerosols between ferrets in lab experiments by acquiring some mutation. This is another deeply aggravated threat of H5N1 HPAIV to humans. To further explore the molecular determinant of H5N1 HPAIV virulence in a mammalian model, we compared the virulence of A/Duck/Guangdong/212/2004 (DK212) and A/Quail/Guangdong/90/2004 (QL90). Though they were genetically similar, they had different pathogenicity in mice, as well as their 16 reassortants. The results indicated that a swap of the PB2 gene could dramatically decrease the virulence of rgDK212 in mice (1896-fold) but increase the virulence of rgQL90 in mice (60-fold). Furthermore, the polymerase activity assays showed that swapping PB2 genes between these two viruses significantly changed the activity of polymerase complexes in 293T cells. The mutation Ser715Asn in PB2 sharply attenuated the virulence of rgDK212 in mice (2710-fold). PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice and 715 Ser in PB2 plays an important role in determing high virulence of DK212 in mice

    A baculovirus dual expression system-based vaccine confers complete protection against lethal challenge with H9N2 avian influenza virus in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian influenza viruses of H9N2 subtype have become highly prevalent in avian species. Although these viruses generally cause only mild to moderate disease, they can infect a wide variety of species, including chickens, quail, turkeys, ducks, geese, pheasant, partridge, and pigeon, even transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them.</p> <p>Results</p> <p>The results showed that stronger immune responses were induced in a mouse model immunized with BV-Dual-HA than in those vaccinated with a DNA vaccine encoding the same antigen. Moreover, complete protection against lethal challenge with H9N2 virus was observed in mice.</p> <p>Conclusion</p> <p>BV-Dual-HA could be utilized as a vaccine candidate against H9N2 virus infection.</p

    Molecular Basis of Efficient Replication and Pathogenicity of H9N2 Avian Influenza Viruses in Mice

    Get PDF
    H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS (or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2 chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine, (K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All together, these results indicate that the PB2 gene and especially position 627 determine virus replication and pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies transmission of H9N2 AIVs

    Antibodies against H10N8 avian influenza virus among animal workers in Guangdong Province before November 30, 2013, when the first human H10N8 case was recognized

    Get PDF
    BACKGROUND: Considered an epicenter of pandemic influenza virus generation, southern China has recently seen an increasing number of human H7N9 infections. However, it is not the only threat. On 30 November 2013, a human H10N8 infection case was first described in China. The origin and genetic diversity of this novel virus is similar to that of H7N9 virus. As H10N8 avian influenza virus (AIV) was first identified from a duck in Guangdong Province during 2012 and there is also evidence of H10N8 infected dogs in this region, we sought to examine archived sera from animal workers to see if there was evidence of subclinical human infections before the first human H10N8 cases. METHODS: We studied archived serum samples (cross-sectional study, convenience sample) collected between May and September 2013 from 710 animal workers and 107 non-animal exposed volunteers living in five cities of Guangdong Province. Study participants’ sera were tested by horse red blood cells (RBCs) hemagglutination inhibition (HI) and microneutralization (MN) assays according to World Health Organization guidelines. The A/Jiangxi-Donghu/346-1/2013(H10N8) virus was used. Sera which have an HI assay ≥1:20 were further tested with the MN assay. Questionnaire data were examined for risk factor associations with positive serological assays. Risk factor analyses failed to identify specific factors associated with probable H10N8 infections. RESULTS: Among the 827 sera, only 21 animal workers had an HI titer ≥1:20 (18 had an HI titer of 1:20 and 3 had an HI titer of 1:40). None of these 21 subjects reported experiencing any influenza symptoms during the three months before enrollment. Among the three subjects with HI titers of 1:40, two had MN antibody titers of 1:40, and one had a MN antibody titer of 1:80 (probable H10N8 infections). CONCLUSIONS: Study data suggest that animal workers may have been infected with the H10N8 virus before the first recognized H10N8 human infection cases. It seems prudent to continue surveillance for H10N8 viruses among animal workers

    NIR-II fluorescence microscopic bioimaging for intrahepatic angiography and the early detection of Echinococcus multilocularis microlesions

    Get PDF
    Hepatic alveolar echinococcosis (HAE) is caused by the metacestode of Echinococcus multilocularis, which shows characteristics of malignant tumors with high mortality. However, traditional diagnostic imaging methods are still not sufficient for the recognition of HAE microlesions in the early stages. Near-infrared-II (900–1700 nm, NIR-II) fluorescence microscopic imaging (NIR-II-FMI) has shown great potential for biomedical detection. A novel type of negative target imaging method based on NIR-II-FMI with the assistance of indocyanine green (ICG) was explored. Then, NIR-II-FMI was applied to the early detection of HAE for the first time. The negative targeting NIR-II fluorescence imaging of HAE-infected mice at different stages with the assistance of ICG under 808 nm of laser irradiation was obtained. Especially, HAE microlesions at the early stage were detected clearly. Moreover, clear intrahepatic angiography was achieved under the same NIR-II-FMI system

    High endemicity of alveolar echinococcosis in Yili Prefecture, Xinjiang Autonomous Region, the People’s Republic of China: infection status in different ethnic communities and in small mammals

    Get PDF
    Alveolar echinococcosis (AE) is a neglected zoonosis caused by the larval stage of the fox/dog tapeworm Echinococcus multilocularis. In this study, we collected data on 286 AE cases reported from Yili Prefecture, Xinjiang Autonomous Region, the People’s Republic of China from 1989 to 2015 with an annual incidence (AI) of 0.41/100,000. Among the patients, 73.08% were diagnosed in the last 11 years. The incidence (0.51–1.22 cases/100,000 residents) was higher in the high-altitude mountainous areas than those in low level areas (0.19–0.29/100,000 residents). In term of ethnic group, the AI of AE in Mongolian (2.06/100,000 residents) and Kazak (0.93/100,000) groups had higher incidence than the other ethnic groups, indicating sheep-farming activity is a risk for infection given that sheep farming is mainly practiced by these two groups in the prefecture. A total of 1411 small mammals were captured with 9.14% infected with E. multilocularis metacestodes. Microtus obscurus was the dominant species captured in the mountainous pasture areas with 15.01% infection rate, whereas Mus musculus and Apodemus sylvaticus were the dominant small mammals in the low altitude areas. Only 0.40% of A. sylvaticus were infected with E. multilocularis. These findings show that Yili Prefecture is a highly endemic area for AE and that the high-altitude pasture areas favorable for M. obscurus may play an important role in its transmission in this region

    A Single E627K Mutation in the PB2 Protein of H9N2 Avian Influenza Virus Increases Virulence by Inducing Higher Glucocorticoids (GCs) Level

    Get PDF
    While repeated infection of humans and enhanced replication and transmission in mice has attracted more attention to it, the pathogenesis of H9N2 virus was less known in mice. PB2 residue 627 as the virulent determinant of H5N1 virus is associated with systemic infection and impaired TCR activation, but the impact of this position in H9N2 virus on the host immune response has not been evaluated. In this study, we quantified the cellular immune response to infection in the mouse lung and demonstrate that VK627 and rTsE627K infection caused a significant reduction in the numbers of T cells and inflammatory cells (Macrophage, Neutrophils, Dendritic cells) compared to mice infected with rVK627E and TsE627. Further, we discovered (i) a high level of thymocyte apoptosis resulted in impaired T cell development, which led to the reduced amount of mature T cells into lung, and (ii) the reduced inflammatory cells entering into lung was attributed to the diminished levels in pro-inflammatory cytokines and chemokines. Thereafter, we recognized that higher GCs level in plasma induced by VK627 and rTsE627K infection was associated with the increased apoptosis in thymus and the reduced pro-inflammatory cytokines and chemokines levels in lung. These data demonstrated that VK627 and rTsE627K infection contributing to higher GCs level would decrease the magnitude of antiviral response in lung, which may be offered as a novel mechanism of enhanced pathogenicity for H9N2 AIV

    The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds

    No full text
    Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA–NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin–Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected

    Biological Characterizations of H5Nx Avian Influenza Viruses Embodying Different Neuraminidases

    No full text
    The H5 subtype virus of Highly Pathogenic Avian Influenza Virus has caused huge economic losses to the poultry industry and is a threat to human health. Until 2010, H5N1 subtype virus was the major genotype in China. Since 2011, reassortant H5N2, H5N6, and H5N8 viruses were identified in domestic poultry in China. The clade 2.3.4.4 H5N6 and H5N8 AIV has now spread to most of China. Clade 2.3.4.4 H5N6 virus has caused 17 human deaths. However, the prevalence, pathogenicity, and transmissibility of the distinct NA reassortment with H5 subtypes viruses (H5Nx) is unknown. We constructed five clade 2.3.4.4 reassortant H5Nx viruses that shared the same HA and six internal gene segments. The NA gene segment was replaced with N1, N2, N6, ΔN6 (with an 11 amino acid deletion at the 58th to 68th of NA stalk region), and N8 strains, respectively. The reassortant viruses with distinct NAs of clade 2.3.4.4 H5 subtype had different degrees of fitness. All reassortant H5Nx viruses formed plaques on MDCK cell monolayers, but the ΔH5N6 grew more efficiently in mammalian and avian cells. The reassortant H5Nx viruses were more virulent in mice as compared to the H5N2 virus. The H5N6 and H5N8 reassortant viruses exhibited enhanced pathogenicity and transmissibility in chickens as compared to the H5N1 reassortant virus. We suggest that comprehensive surveillance work should be undertaken to monitor the H5Nx viruses
    corecore