12,397 research outputs found

    Possible quantum phase-manipulation of a two-leg ladder in mixed-dimensional fermionic cold atoms

    Full text link
    The recent realization of mixed-dimensional systems of cold atoms has attracted much attention from both experimentalists and theorists. Different effective interactions and novel correlated quantum many-body phases may be engineered in these systems, with the different phases being tunable via external parameters. In this article we investigate a two-species Fermi atom mixture: one species of atom exists in two hyperfine states and is confined to move in a two-leg ladder, interacting with an on-site interaction, and the other moves freely in a two dimensional square lattice that contains the two-leg ladder. The two species of atoms interact via an on-site interaction on the ladder. In the limit of weak inter-species interactions, the two-dimensional gas can be integrated out, leading to an effective long-range mediated interaction in the ladder, generated by to the on-site inter-species interaction. We show that the form of the mediated interaction can be controlled by the density of the two-dimensional gas and that it enhances the charge density wave instability in the two-leg ladder after the renormalization group transformation. Parameterizing the phase diagram with various experimentally controllable quantities, we discuss the possible tuning of the macroscopic quantum many-body phases of the two-leg ladder in this mixed-dimensional fermionic cold atom system.Comment: 4 pages and 3 figure

    Giant Magnons and Spiky Strings on S^3 with B-field

    Full text link
    We study solutions for a rotating string on S^3 with a background NS-NS B-field and show the existence of spiky string and giant magnon as two limiting solutions. We make a connection to the sine-Gordon model via the Polyakov worldsheet action and study the effect of B-field. In particular, we find the magnon solution can be mapped to the excitation of a fractional spin chain. We conjecture a B-deformed SYM to be the gauge theory dual to this background.Comment: 22 pages, 3 figures, more references adde

    Flex-Gears

    Get PDF
    Flex-Gears are being developed as an alternative to brushes and slip rings to conduct electricity across a rotating joint. Flex-Gears roll in the annulus of sun and ring gears for electrical contact while maintaining their position by using a novel application of involute gears. A single Flex-Gear is predicted to transfer up to 2.8 amps, thereby allowing a six inch diameter device, holding 30 Flex-Gears, to transfer over 80 amps. Semi-rigid Flex-Gears are proposed to decrease Flex-Gear stress and insure proper gear meshing

    d_{xy}-Density wave in fermion-fermion cold atom mixtures

    Full text link
    We study density wave instabilities in a doubly-degenerate Fermi-Fermi mixture with SU(2)×SU(2)SU(2)\times SU(2) symmetry on a square lattice. For sufficiently large on-site inter-species repulsion, when the two species of fermions are both at half-filling, two conventional (ss-wave) number density waves are formed with a π\pi-phase difference between them to minimize the inter-species repulsion. Upon moving one species away from half-filling, an unconventional density wave with dxyd_{xy}-wave symmetry emerges. When both species are away from the vicinity of half-filling, superconducting instabilities dominate. We present results of a functional renormalization-group calculation that maps out the phase diagram at weak couplings. Also, we provide a simple explanation for the emergence of the dxyd_{xy}-density wave phase based on a four-patch model. We find a robust and general mechanism for dxyd_{xy}-density-wave formation that is related to the shape and size of the Fermi surfaces. The density imbalance between the two species of fermions in the vicinity of half-filling leads to phase-space discrepancy for different inter-species Umklapp couplings. Using a phase space argument for leading corrections in the one-loop renormalization group approach to fermions, we show that the phase-space discrepancy in our system causes opposite flows for the two leading intra-species Umklapp couplings and that this triggers the dxyd_{xy}-density-wave instability.Comment: revised long version; 8 pages, 7 figure

    Local gauge symmetry on optical lattices?

    Full text link
    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.Comment: 6 pages, 3 figures,poster presented at the 30th International Symposium on Lattice Field Theory, June 24 - 29, 2012, Cairns, Australi

    HLA-B27 and Ankylosing Spondylitis

    Get PDF
    • …
    corecore