243 research outputs found

    CAT Differential Drag Implementation and Lessons Learned

    Get PDF
    The CubeSat Signal Preprocessor Assessment and Test (CAT) spacecraft were deployed via Nanoracks from the International Space Station on January 31, 2019 and have successfully operated for over a year. These twin 3U configuration spacecraft rely on differential drag to maintain desired in-track separation distances of 10 – 150 km. The design and implementation of the differential drag maneuvers is presented along with the on-orbit results. Lessons learned throughout the past 1.5 years of spacecraft operations as well as updates to how the orbit determination and differential drag planning are conducted are also discussed. The CAT mission has been considered a success and an extended mission has been proposed to operate the spacecraft until their estimated re-entry in mid-2021

    Image Tamper Detection and Recovery by Intersecting Signatures

    Get PDF
    In this paper, we propose an exact image authentication scheme that can, in the best case, detect image tampering with the accuracy of one pixel. This method is based on constructing blocks in the image in such a manner that they intersect with one another in different directions. Such a technique is very useful to identify whether an individual image pixel has been tampered with. Moreover, the tampered region can be well recovered with the embedded recover data

    An online conserved SSR discovery through cross-species comparison

    Get PDF
    Simple sequence repeats (SSRs) play important roles in gene regulation and genome evolution. Although there exist several online resources for SSR mining, most of them only extract general SSR patterns without providing functional information. Here, an online search tool, CG-SSR (Comparative Genomics SSR discovery), has been developed for discovering potential functional SSRs from vertebrate genomes through cross-species comparison. In addition to revealing SSR candidates in conserved regions among various species, it also combines accurate coordinate and functional genomics information. CG-SSR is the first comprehensive and efficient online tool for conserved SSR discovery

    Differential evolutionary conservation of motif modes in the yeast protein interaction network

    Get PDF
    BACKGROUND: The importance of a network motif (a recurring interconnected pattern of special topology which is over-represented in a biological network) lies in its position in the hierarchy between the protein molecule and the module in a protein-protein interaction network. Until now, however, the methods available have greatly restricted the scope of research. While they have focused on the analysis in the resolution of a motif topology, they have not been able to distinguish particular motifs of the same topology in a protein-protein interaction network. RESULTS: We have been able to assign the molecular function annotations of Gene Ontology to each protein in the protein-protein interactions of Saccharomyces cerevisiae. For various motif topologies, we have developed an algorithm, enabling us to unveil one million "motif modes", each of which features a unique topological combination of molecular functions. To our surprise, the conservation ratio, i.e., the extent of the evolutionary constraints upon the motif modes of the same motif topology, varies significantly, clearly indicative of distinct differences in the evolutionary constraints upon motifs of the same motif topology. Equally important, for all motif modes, we have found a power-law distribution of the motif counts on each motif mode. We postulate that motif modes may very well represent the evolutionary-conserved topological units of a protein interaction network. CONCLUSION: For the first time, the motifs of a protein interaction network have been investigated beyond the scope of motif topology. The motif modes determined in this study have not only enabled us to differentiate among different evolutionary constraints on motifs of the same topology but have also opened up new avenues through which protein interaction networks can be analyzed

    Using BDH for the Message Authentication in VANET

    Get PDF
    The transport message security provided by vehicles in VANETs is quite important; vehicle message should be real-time and it will be not complicated to validate message calculation. The method proposed in the essay is mainly to validate the identity by means of Bilinear Diffie-Hellman method, and make vehicles validate the authenticity of RSU and TA’s identity and the effectiveness of key. RSU and TA only need to validate vehicle identity, without helping vehicles produce any key. When vehicle identity validation is completed, vehicles will produce public value and transmit it to other RSU and vehicles, while other vehicles could validate the identity through the message from the sender and public value from RSU. The advantages of the method proposed in this essay are listed as follows. (1) Vehicles, RSU, and TA can validate mutual identities and the effectiveness of keys. (2) Vehicles can produce public value functions automatically, thus reducing key control risks. (3) Vehicles do not need to show certificates to validate their identities, preventing the certificates from attacking because of long-term exposure. (4) Vehicles adopt a pseudonym ID challenge to validate their own identities during the process of handoff. (5) Vehicle messages can be validated using the Bilinear Diffie-Hellman (BDH) method without waiting for the RSU to validate messages, thus improving the instantaneity of messaging. The method proposed in the essay can satisfy source authentication, message integrity, nonrepudiation, privacy, and conditional untraceability requirements

    Using Capacitance Sensor to Extract Characteristic Signals of Dozing from Skin Surface

    Get PDF
    Skin is the largest organ of the human body and a physiological structure that is directly exposed to the environment. From a theoretical perspective, numerous physiological and psychological signals use the skin as a medium for input and output with the outside world. Therefore, the skin is considered an optimal signal interception point when developing noninvasive, direct, and rapid signal exploration devices. To date, skin signal interceptions are predominantly performed by measuring skin impedance. However, this method is prone to interference such as sweat secretion, salt accumulation on the skin, and muscle contractions, which may result in a substantial amount of interference and erroneous results. The present study proposes novel and effective methods for skin signal interception, such as using a nested probe as a sensor to measure capacitance to be further processed as physiological and psychological signals. The experimental results indicate that the capacitance curve for the transition between wakefulness and dozing exhibits significant changes. This change in the curve can be analyzed by computer programs to clearly and rapidly determine whether the subject has entered the initial phases of sleep
    • …
    corecore