12 research outputs found

    On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving

    Full text link
    The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, GPT-4V(ision), and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that GPT-4V demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: \url{https://github.com/PJLab-ADG/GPT4V-AD-Exploration

    Delineating the molecular landscape of different histopathological growth patterns in colorectal cancer liver metastases

    Get PDF
    BackgroundHistopathological growth patterns (HGPs) have shown important prognostic values for patients with colorectal cancer liver metastases, but the potential molecular mechanisms remain largely unknown.MethodsWe performed an exploratory analysis by conducting the RNA sequencing of primary colorectal lesions, colorectal liver metastatic lesions and normal liver tissues.FindingsWe found that desmoplastic HGPs of the metastatic lesions were significantly enriched in EMT, angiogenesis, stroma, and immune signaling pathways, while replacement HGPs were enriched in metabolism, cell cycle, and DNA damage repair pathways. With the exception of immune-related genes, the differentially expressed genes of the two HGPs from colorectal liver metastases were mostly inherited from the primary tumor. Moreover, normal liver tissue in the desmoplastic HGP subgroup was markedly enriched in the fibrinous inflammation pathway.ConclusionsWe surmised that HGPs are observable morphological changes resulting from the regulation of molecular expressions, which is the combined effect of the heterogeneity and remodeling of primary tumors seeds and liver soils

    Effects of Tree Shape on the Microclimate and Fruit Quality Parameters of Camellia oleifera Abel

    No full text
    Tree shape can affect microclimate, which may directly influence fruit growth and development. Open center and round head are two tree canopy shapes that are generally used in Camellia oleifera Abel. cultivation. To study the effects of the two canopy shapes on the microclimate and fruit quality parameters inside the canopy and investigate the correlations between microclimate and oil yield characteristics, microclimates in different developmental periods and fruit quality parameters at maturity at different positions in the two canopy shapes were determined. In this study, the open-center shape increased the light intensity and temperature, and reduced the relative humidity within the canopy, and the microclimate was more uniformly distributed within the open-center canopy. Fruit quality parameters of open-center canopied trees were also significantly increased and had more uniform distributions, especially the oil yield parameters. The content ratio of the dry seed, oil content ratio of the fresh fruit, and oil yield increased by 43.55%, 59.30% and 79.01%, in the lower layer, respectively, and 27.33%, 41.75%, and 55.43%, in the inner canopy, respectively, compared to those of round-head canopied trees. For both canopy shapes, oil yield parameters had positive correlations with light intensity and temperature, but negative correlations with relative humidity, and the correlation coefficients between light intensity and temperature at different developmental stages and oil yield parameters in round-head canopies were greater than in the open-center canopies. Additionally, regression equations between the single microclimatic factor in different developmental periods and oil yield parameters could be used to estimate the latter in the two canopy shapes. The optimum light conditions for open-center and round-head canopy shapes were 916–1893 and 1108–1259 μmol·m2·s−1, respectively. Overall, the open-center canopy had a more desirable microclimate and a more uniform microclimate distribution, especially the light intensity, which contributes to high uniform fruit quality parameters. Thus, an open-center canopy is the desirable shape in C. oleifera production

    Anisotropic Strain Relaxation in Semipolar <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> InGaN/GaN Superlattice Relaxed Templates

    No full text
    Semipolar (112¯2) InGaN/GaN superlattice templates with different periodical InGaN layer thicknesses were grown on m-plane sapphire substrates using metal-organic chemical vapor deposition (MOCVD). The strain in the superlattice layers, the relaxation mechanism and the influence of the strain relaxation on the semipolar superlattice template were explored. The results demonstrated that the strain in the (112¯2) InGaN/GaN superlattice templates was anisotropic and increased with increasing InGaN thickness. The strain relaxation in the InGaN/GaN superlattice templates was related to the formation of one-dimension misfit dislocation arrays in the superlattice structure, which caused tilts in the superlattice layer. Whereas, the rate of increase of the strain became slower with increasing InGaN thickness and new misfit dislocations emerged, which damaged the quality of the superlattice relaxed templates. The strain relaxation in the superlattice structure improved the surface microtopography and increased the incorporation of indium in the InGaN epitaxial layers

    A review of the preparation, properties and applications of VO2 thin films with the reversible phase transition

    No full text
    The reversible phase transition of vanadium dioxide under thermal, electrical, and optical stimuli is the enabling concept for the functioning of smart materials and is the basis for the development of various device materials such as optical, electrical, thermal, and mechanical devices based on VO2 on rigid and flexible platforms. The phase transition temperature of VO2 near room temperature is considered an excellent choice and a potential candidate to replace traditional materials in a variety of applications. There is a growing interest in VO2 applications for a wide range of devices, and the use of VO2’s structure to manipulate and explore the functions of various application devices, as well as the modification of VO2 structures to improve performance in a variety of materials, can lead to extremely exciting innovations. A lot of effort has been put into the challenges of practical production and practical application, and it is necessary to find an industrially feasible manufacturing method for the preparation of VO2 films, which is the basis for the practical application of VO2-based equipment. Based on this background, we first briefly describe the structure of VO2, the phase transition mechanisms involved, and the factors and other properties induced by the phase transition of VO2. Then, the current status and advantages and disadvantages of VO2 thin film preparation technologies are introduced in detail, including pulsed laser deposition (PLD), magnetron sputtering, the sol-gel method, and chemical vapour deposition (CVD). In addition, we propose three strategies to improve the performance of VO2 thin films, including element doping, multi-layer composites, and surface structure. We also discussed the different applications of VO2 under thermal, electrical, and light stimulation, as well as the development trends and future challenges of VO2 thin films

    Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma.

    No full text
    OBJECTIVE: To characterise gut microbiome in patients with hepatocellular carcinoma (HCC) and evaluate the potential of microbiome as non-invasive biomarkers for HCC. DESIGN: We collected 486 faecal samples from East China, Central China and Northwest China prospectively and finally 419 samples completed Miseq sequencing. We characterised gut microbiome, identified microbial markers and constructed HCC classifier in 75 early HCC, 40 cirrhosis and 75 healthy controls. We validated the results in 56 controls, 30 early HCC and 45 advanced HCC. We further verified diagnosis potential in 18 HCC from Xinjiang and 80 HCC from Zhengzhou. RESULTS: Faecal microbial diversity was increased from cirrhosis to early HCC with cirrhosis. Phylum Actinobacteria was increased in early HCC versus cirrhosis. Correspondingly, 13 genera including Gemmiger and Parabacteroides were enriched in early HCC versus cirrhosis. Butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early HCC versus controls. The optimal 30 microbial markers were identified through a fivefold cross-validation on a random forest model and achieved an area under the curve of 80.64% between 75 early HCC and 105 non-HCC samples. Notably, gut microbial markers validated strong diagnosis potential for early HCC and even advanced HCC. Importantly, microbial markers successfully achieved a cross-region validation of HCC from Northwest China and Central China. CONCLUSIONS: This study is the first to characterise gut microbiome in patients with HCC and to report the successful diagnosis model establishment and cross-region validation of microbial markers for HCC. Gut microbiota-targeted biomarkers represent potential non-invasive tools for early diagnosis of HCC

    新疆喀什-乌恰交汇区潮汐触发地震活动的统计检验/A statistical analysis on tidal triggering of the earthquake in the Kashi-Wuqia intersection area, Xinjiang[J]

    No full text
    基于Schuster检验及Permutation检验方法,对喀什-乌恰交汇区地震活动受固体潮触发情况进行日尺度及月尺度检验.其中日尺度分别选取引潮力南北分量、东西分量及潮汐体应力作为潮汐曲线.研究结果显示,该地区地震活动均较多的发生于3种潮汐的最大值(相位0°)附近,优势发震相位分别为-5.86°、6.60°以及-15.52°,且发生地震的频次随潮汐力的增大而增加;利用3种潮汐曲线(引潮力日尺度南北分量、东西分量以及潮汐体应力)对所有地震进行Schuster检验所得Ps值分别为10.52%、2.40%以及2.06%,Permutation检验所得PP值分别为10.90%、2.40%以及2.06%,其中基于引潮力东西分量及潮汐体应力的Ps、Pp值均低于潮汐触发地震的阈值0.05.月尺度Schuster检验Ps值及Permutation检验Pp值结果均非常小(接近于0),远低于潮汐触发地震阈值0.05,优势发震相位φ为-1.91°,较为接近月尺度下的固体潮最大值0°(即农历朔、望).对潮汐触发地震的统计学检验结果即东西向潮汐触发效应大于南北向触发效应的原因进行了初步解释
    corecore