19 research outputs found

    PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer

    Get PDF
    Objectives: To characterize the safety, tolerability, and anti-tumor activity of cemiplimab as monotherapy or in combination with hypofractionated radiation therapy (hfRT) in patients with recurrent or metastatic cervical cancer. To determine the association between histology and programmed death-ligand 1 (PD-L1) expression. Methods: In non-randomized phase I expansion cohorts, patients (squamous or non-squamous histology) received cemiplimab 3 mg/kg intravenously every 2 weeks for 48 weeks, either alone (monotherapy cohort) or with hfRT during week 2 (combination cohort). Due to insufficient tissue material, PD-L1 protein expression was evaluated in commercially purchased samples and mRNA expression levels were analyzed from The Cancer Genome Atlas (TCGA). Results: Twenty patients enrolled in both cohorts in total; 10 had squamous histology. The most common adverse events of any grade were diarrhea, fatigue, and hypokalemia, occurring in 35%, 25%, and 25%, respectively. Objective response rate was 10% in each cohort; responders had squamous histology. Duration of response was 11.2 months and 6.4 months for the responder in the monotherapy and combination cohort, respectively. Irradiated lesions were not included in the response assessments. In separate archived specimens (N = 155), PD-L1 protein expression in tumor and immune cells was negative (<1%) more commonly in adenocarcinoma than in squamous tumors. PD-L1 mRNA levels were lower in adenocarcinoma than squamous cell tumors (1.2 vs 5.0 mean transcripts per million, respectively) in TCGA. Conclusions: Cemiplimab has activity in cervical squamous cell carcinoma. The phase I results, combined with results from other anti-PD-1 trials in cervical cancer and our biomarker analyses have informed the design of the ongoing phase III trial, with the primary overall survival hierarchical analyses being done first in patients with squamous histology

    RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy

    No full text
    Abstract Background Critical illness myopathy (CIM) is associated with severe skeletal muscle wasting and impaired function in intensive care unit (ICU) patients. The mechanisms underlying CIM remain incompletely understood. To elucidate the biological activities occurring at the transcriptional level in the skeletal muscle of ICU patients with CIM, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using RNA sequencing (RNA-seq). We also compared the skeletal muscle gene signatures in ICU patients with CIM and genes perturbed by mechanical loading in one leg of the ICU patients, with an aim of reducing the loss of muscle function. Methods RNA-seq was used to assess gene expression changes in tibialis anterior skeletal muscle samples from seven critically ill, immobilized, and mechanically ventilated ICU patients with CIM and matched control subjects. We also examined skeletal muscle gene expression for both legs of six ICU patients with CIM, where one leg was mechanically loaded for 10 h/day for an average of 9 days. Results In total, 6257 of 17,221 detected genes were differentially expressed (84% upregulated; p < 0.05 and fold change ≥ 1.5) in skeletal muscle from ICU patients with CIM when compared to control subjects. The differentially expressed genes were highly associated with gene changes identified in patients with myopathy, sepsis, long-term inactivity, polymyositis, tumor, and repeat exercise resistance. Upstream regulator analysis revealed that the CIM signature could be a result of the activation of MYOD1, p38 MAPK, or treatment with dexamethasone. Passive mechanical loading only reversed expression of 0.74% of the affected genes (46 of 6257 genes). Conclusions RNA-seq analysis revealed that the marked muscle atrophy and weakness observed in ICU patients with CIM were associated with the altered expression of genes involved in muscle contraction, newly identified E3 ligases, autophagy and calpain systems, apoptosis, and chaperone expression. In addition, MYOD1, p38 MAPK, and dexamethasone were identified as potential upstream regulators of skeletal muscle gene expression in ICU patients with CIM. Mechanical loading only marginally affected the skeletal muscle transcriptome profiling of ICU patients diagnosed with CIM

    Evaluation of the capacities of mouse TCR profiling from short read RNA-seq data.

    No full text
    Profiling T cell receptor (TCR) repertoire via short read transcriptome sequencing (RNA-Seq) has a unique advantage of probing simultaneously TCRs and the genome-wide RNA expression of other genes. However, compared to targeted amplicon approaches, the shorter read length is more prone to mapping error. In addition, only a small percentage of the genome-wide reads may cover the TCR loci and thus the repertoire could be significantly under-sampled. Although this approach has been applied in a few studies, the utility of transcriptome sequencing in probing TCR repertoires has not been evaluated extensively. Here we present a systematic assessment of RNA-Seq in TCR profiling. We evaluate the power of both Fluidigm C1 full-length single cell RNA-Seq and bulk RNA-Seq in characterizing the repertoires of different diversities under either naĂŻve conditions or after immunogenic challenges. Standard read length and sequencing coverage were employed so that the evaluation was conducted in accord with the current RNA-Seq practices. Despite high sequencing depth in bulk RNA-Seq, we encountered difficulty quantifying TCRs with low transcript abundance (<1%). Nevertheless, top enriched TCRs with an abundance of 1-3% or higher can be faithfully detected and quantified. When top TCR sequences are of interest and transcriptome sequencing is available, it is worthwhile to conduct a TCR profiling using the RNA-Seq data

    IL-33 blockade affects mediators of persistence and exacerbation in a model of chronic airway inflammation

    No full text
    Background: Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations. Objective: We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations. Methods: Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype. Results: We show that lung IL-33 drives inflammation and remodeling beyond the type 2 response classically associated with IL-33 signaling. IL-33 blockade with an IL-33 neutralizing antibody normalized established inflammation and improved remodeling of both the lung epithelium and lung parenchyma. Specifically, IL-33 blockade normalized persisting and exacerbating inflammatory end points, including eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration. Importantly, we identified a key role for IL-33 in driving lung remodeling because anti–IL-33 also re-established the presence of ciliated cells over mucus-producing cells and decreased myofibroblast numbers, even in the context of continuous allergen exposure, resulting in improved lung function. Conclusion: Overall, this study shows that increased IL-33 levels drive a self-perpetuating amplification loop that maintains the lung in a state of lasting inflammation and remodeled tissue primed for exacerbations. Thus IL-33 blockade might ameliorate symptoms and prevent exacerbations by quelling persistent inflammation and airway remodeling

    PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer

    No full text
    Objectives: To characterize the safety, tolerability, and anti-tumor activity of cemiplimab as monotherapy or in combination with hypofractionated radiation therapy (hfRT) in patients with recurrent or metastatic cervical cancer. To determine the association between histology and programmed death-ligand 1 (PD-L1) expression. Methods: In non-randomized phase I expansion cohorts, patients (squamous or non-squamous histology) received cemiplimab 3 mg/kg intravenously every 2 weeks for 48 weeks, either alone (monotherapy cohort) or with hfRT during week 2 (combination cohort). Due to insufficient tissue material, PD-L1 protein expression was evaluated in commercially purchased samples and mRNA expression levels were analyzed from The Cancer Genome Atlas (TCGA). Results: Twenty patients enrolled in both cohorts in total; 10 had squamous histology. The most common adverse events of any grade were diarrhea, fatigue, and hypokalemia, occurring in 35%, 25%, and 25%, respectively. Objective response rate was 10% in each cohort; responders had squamous histology. Duration of response was 11.2 months and 6.4 months for the responder in the monotherapy and combination cohort, respectively. Irradiated lesions were not included in the response assessments. In separate archived specimens (N = 155), PD-L1 protein expression in tumor and immune cells was negative (<1%) more commonly in adenocarcinoma than in squamous tumors. PD-L1 mRNA levels were lower in adenocarcinoma than squamous cell tumors (1.2 vs 5.0 mean transcripts per million, respectively) in TCGA. Conclusions: Cemiplimab has activity in cervical squamous cell carcinoma. The phase I results, combined with results from other anti-PD-1 trials in cervical cancer and our biomarker analyses have informed the design of the ongoing phase III trial, with the primary overall survival hierarchical analyses being done first in patients with squamous histology
    corecore