8,599 research outputs found

    4-Amino-1-(2-benzoyl-1-phenyl­eth­yl)-3-phenyl-1H-1,2,4-triazol-5(4H)-thione

    Get PDF
    In the title compound, C23H20N4OS, the two phenyl rings of the diphenyl­propanone fragment form a dihedral angle of 86.8 (1)°, and the third phenyl ring attached to the triazole ring is twisted from the latter at 40.1 (1)°. In the crystal, mol­ecules are paired into centrosymmetric dimers via pairs of inter­molecular N—H⋯O and N—H⋯S hydrogen bonds

    8-Phenyl-10-oxa-8-aza­tricyclo­[4.3.0.12,5]decane-7,9-dione

    Get PDF
    The reaction of aniline with norcantharidin produced the imide title compound, C14H13NO3, which shows no significant hydrogen bonds in the crystal structure. The dihedral angle between the phenyl and pyrrolidine rings is 48.48 (6)°

    Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization.

    Get PDF
    Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination

    Quantitative Proteomics of Chromochloris zofingiensis Reveals the Key Proteins Involved in Cell Growth and Bioactive Compound Biosynthesis

    Get PDF
    Glucose metabolism regulates cell growth and affects astaxanthin accumulation in the green algae Chromochloris zofingiensis. Hub gene functioning in this bioactive compound has been illustrated at the genome, transcriptome and metabolome level, but is rather limited from a proteome aspect. Microalgal cell produce an enhanced biomass (8-fold higher) but decreased lipid and astaxanthin content (~20% less) in the glucose condition compared to the control. Here, we investigate the proteomic response of C. zofingiensis grown with and without glucose using an LC-MS/MS-based Tandem Mass Tag (TMT) approach. The proteomic analysis demonstrated that glucose supplementation triggers the upregulation of 105 proteins and downregulation of 151 proteins. Thus, the carbon and energy flux might flow to cell growth, which increased the associated protein abundance, including DNA polymerase, translation initiation factor, 26S proteasome regulatory subunits, and the marker enzyme of the TCA cycle ribosomal protein. Moreover, the glucose supplement triggered the downregulation of proteins mainly involved in photosynthesis, chloroplasts, valine, leucine and isoleucine biosynthesis, 2-oxocarboxylic acid metabolism, and pantothenate and CoA biosynthesis pathways. This proteomic analysis is likely to provide new insights into algal growth and lipid or astaxanthin accumulation upon glucose supplementation, providing a foundation for further development of C. zofingiensis as oleaginous microalga for bioengineering applications
    corecore