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NUMERICAL PREDICTION FOR LAMINAR FORCED
CONVECTION HEAT TRANSFER IN PARALLEL-PLATE

CHANNELS WITH STREAMWISE-PERIODIC ROD
DISTURBANCES
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SUMMARY

A numerical study has been performed for the periodically fully-developed flow in two-dimensional
channels with streamwise-periodic round disturbances on its two walls. To accurately describe the round
disturbance boundary condition, a body fitted grid was used. The flow and heat transfer have been
studied in the range of Reynolds number, Re=50–700, and Prandtl number Pr=0.71. The influences of
disturbance parameters and Reynolds number on heat transfer and friction have been investigated in
detail. Some of the solutions have been examined using both steady and unsteady finite difference
schemes; and the same results have been obtained. The results show that different flow patterns can occur
with different deployments of the disturbances. With appropriate configuration of the disturbances, the
Nusselt number can reach a value four times greater than in a smooth channel at the same condition,
with the penalty of a much greater pressure drop. On the other hand, if the disturbances are not deployed
properly, augmentation of heat transfer cannot be acquired. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many duct configurations are employed in engineering to enhance heat transfer. There are
numerous instances of ducts which have streamwise-periodic cross-sections. Many experimen-
tal studies have revealed that the entrance lengths of fluid flow and heat transfer for such
streamwise-periodic ducts are much shorter than those of plain ducts, and quite often, three to
five cycles can make the flow and heat transfer fully-developed [1–3]. More recently, one of the
present authors has completed an experimental research project on the enhancement of
internal duct heat transfer by periodically positioning longitudinal short rectangular fins on
two principal walls [4]. To confirm the periodic fully-developed heat transfer characteristics,
local wall temperatures were directly measured for each cycle using thermocouples and the two
principal walls were electrically heated. In the Reynolds number range from 5×103 to
5.87× l04, it is again revealed that after three to six cycles the local heat transfer coefficient
distribution exhibits a periodic character, implying that both the fluid flow and heat transfer
are in the periodic fully-developed region. This direct heat transfer measurement, along with
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those performed by previous authors using the naphthalene sublimation technique [1–3,5],
definitely shows that for the configurations with streamwise-periodic cross-section, the fluid
flow and heat transfer can be periodically fully-developed after passing a certain number of
cycles. In engineering practice the streamwise length of such ducts is usually much longer than
several cycles, therefore theoretical works for such ducts often focus on the periodically
fully-developed fluid flow and heat transfer, which were first put forward and discussed in
detail in Reference [6]. A channel mounted by roughness elements or ribs on its surfaces is one
of the most important examples of streamwise-periodic ducts, and is widely used in the cooling
of electronic equipment and gas turbine blades, as well as a high performance heat exchanger.
A number of numerical simulations on the periodically fully-developed fluid flow and heat
transfer characteristics have been performed [7–12]. The roughness elements or ribs studied in
the existing publications are usually rectangular in shape, which does not provide any special
difficulty for numerical simulation. However, sometimes elements may be round in shape [1,2],
making the domain of one cycle irregular from the view point of numerical simulation. This
difficulty can be solved by two methods. The first method is to approximate the curved walls
by a succession of steps and extend the computation domain to a rectangle [7,10,13]. This
method usually works well but may result in severe errors in some situations, especially for
those cases having a drastically curved boundary. The other technique uses the body-fitted
co-ordinates (BFC) to accommodate the irregular boundary [14]. This method has the
advantages of good feasibility and high accuracy of numerical solution around the irregular
boundary, and is adopted in the present study.

This paper is concerned with fluid flow and heat transfer characteristics in parallel-plate
channels having streamwise-periodic round disturbances on its two principal walls (Figure 1).
The fluid flow and heat transfer is considered to be laminar, two-dimensional and in steady
state. As depicted in Figure 1, there are two dimensionless geometric parameters, i.e. P/E and
H/E. In addition, the Prandtl number and Reynolds number must be included, resulting in a
total of four parameters for the study of fully-developed characteristics. In this study, the
Prandtl number was kept constant (0.71), while the other three parameters were varied in the
following range: P/E=5–20, H/E=3.33–5, Re=50–700. To accurately describe the round
disturbance boundary condition, an algebraic grid generation technique [13] was adopted to
generate a BFC system. A typical grid network for the computation domain, shown by the
shaded area in Figure 1, is presented in Figure 2 for the case of P/E=7.5 and H/E=5.

Figure 1. Diagram showing cycles of the periodic geometry.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Figure 2. Representative grid system.

2. ANALYSIS

The identification of the periodicity characteristics of the velocity components and of a
reduced pressure function enables the flow field analysis to be confined to a single isolated
model, without involvement with the entrance region problem. For a uniform wall temperature
boundary condition, which is the situation dealt with in the present study, dimensionless
temperature profiles of similar shape also recur periodically. Thus, numerical analysis must
only be conducted for a single module in the duct. Half of this module, ABCD, is indicated in
Figure 1 to represent the solution domain because of the symmetric nature of the problem. For
two-dimensional flow with constant properties, the governing equations are
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Attention is now turned to the boundary conditions. For a periodically fully-developed flow
the velocity components exhibit a periodic behavior:

u(0, y)=u(P, y), (5)

6(0, y)=6(P, y), (6)

and pressure can be subdivided into two components:

p(x, y)= −bx+p %(x, y), (7)

where b is a constant representing the global pressure gradient, and the quantity p % is the
periodic variable term with

p %(0, y)=p %(P, y). (8)
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The fluid temperature in the fully-developed periodic flow with a constant wall temperature
does not simply repeat itself. But a properly defined dimensionless temperature, such as

u(x, y)=
T(x, y)−Tw

Tb(x)−Tw

, (9)

where

Tb(x)−Tw=

&
A

u(T−Tw) dA&
A

u dA
, (10)

does have a periodic nature. So the inlet and outlet temperature boundary condition can be
written as

u(0, y)=u(P, y). (11)

Equations (5), (6), (8) and (11) describe the inlet and outlet boundary conditions. For both
flow and heat transfer the top surface of the domain is a symmetry line, thus following
equations are valid on it:

(u
(y

=0,
(u

(y
=0, 6=0. (12)

At the solid surfaces the no-slip requirement applies for velocity components, and a constant
temperature is assigned to the bottom surface. The surface of the round disturbances is
assumed to be adiabatic, which simulates inactive roughness elements in the experiments using
the naphthalene sublimation technique [1,2].

There are two numerical algorithms used to solve the periodically fully-developed convective
heat transfer problem. One algorithm was suggested in Reference [6]. In this algorithm, the
dimensionless governing equation of temperature is transformed into an eigenvalue problem
and the pressure term is replaced by the average pressure gradient b and the reduced pressure
p %. The value of b is adjusted in the solution procedure to accommodate the algebraic
equations. The other method implements the periodic conditions of Equations (5), (6) and (11)
by mutual replacements of the field variables at inlet and outlet regions. This method was first
adopted by Amano et al. [15,16] and later enhanced by Xin and Tao [9], Pang et al. [17] and
Wang and Tao [18]. This algorithm seems to be more straightforward and easier to implement,
therefore it will be adopted in the present work. For further details, Reference [18] may be
consulted.

The finite volume approach was combined with the SIMPLE algorithm and the power-law
scheme, in order to discretize and solve the governing equations. A careful check for the grid
independence of the numerical solutions has been conducted to ensure the accuracy of the
numerical solution. For this purpose, five grid systems 37×27, 57×32, 82×37, 120×60 and
150×80 were tested. For the case of Re=700, H/E=5, P/E=10, the maximum relative
deviation for Nusselt number between 82×37 and 150×72 is B4.5%. It was considered that
the system of 82×37 nodes was a good compromise between necessary accuracy and efficiency
(Figure 3), so it was used for majority of the geometry configurations except for the situation
where P/H=1, in which a 52×52 grid system was employed. It is generally considered that
the power-law differential scheme (PLDS) may involve appreciable numerical diffusion,
therefore a comparison of the present results with those obtained using other higher order
schemes such as the central difference scheme (CDS) will be helpful to justify the present work.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Figure 3. Grid-dependence character of Num.

The comparative results are presented in Table I. It can be seen that for the problem studied,
the difference between the results from PLDS and from CDS are negligible.

The numerical solution of transient governing equations does not necessarily converge to the
solution of the steady state governing equations when the time approaches infinity, because
this happens for the cases where bifurcation occurs [19]; therefore it is necessary to confirm
that the numerical solutions are unique for the present study. Preliminary computations were
performed for some typical cases using the transient governing equations. Steady state results
obtained from the two sets of governing equations agree well with each other. For the case of
H/E=5, P/E=20 and Re=700, the relative deviation of the average Nusselt number is
B3%, while that of the friction factor is even smaller (510−2). In view of saving computer
time, the steady method was adopted. The convergence criterion for terminating the iterative
procedure is

Gres510−8, (13)

where Gres is the residual of the mass flow rate of the entire domain normalized by the mass
flow rate at the inlet.

Table I. Comparison of results using PLDS and CDS

100 200 400 700Re 50

10.6488.9888.1667.811 12.776PLDSNu
8.172 8.925 10.354 12.994CDS 7.811

0.1999f 0.33520.63191.21972.3980PLDS
0.6298 0.3329 0.20892.3980 1.2198CDS

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Figure 4. Flow patterns at different Reynolds numbers (H/E=5, P/E=7.5). (a) Re=50; (b) Re=200; (c) Re=400;
(d) Re=700.

3. RESULTS AND DISCUSSION

The presentation of the numerical results will begin with the flow field, followed by an
examination of the temperature field. The effects of P/E and H/E on the friction factor and
heat transfer will then be discussed.

3.1. Results of flow field

Figure 4 shows the Reynolds number influence on the flow pattern for the case H/E=5,
P/E=7.5. In order to show the flow in the vicinity of the rod clearly, the streamlines have not
been drawn at a constant interval, with smaller intervals near the bottom wall. It can be seen
from the flow pattern that the Reynolds number has a significant effect on the flow field.
Apart from the global variation in flow pattern with Reynolds number, the special feature to
be noted is the two vortices located in the upstream and downstream corners near the rods,
and they can be seen in any of the four diagrams. For the very low Reynolds number case
(Re550), the two vortices are almost identical and the flow streamlines are nearly symmetric
about the mid-vertical line of the domain. With the increase in Reynolds number, the vortex
behind the rod becomes larger, while the vortex ahead of the rod remains almost unchanged.
Another notable feature of the vortex behind the rod is that its strength is also increased
appreciably as the Reynolds number varies from 50 to 700. This will affect the local heat
transfer distribution which will be discussed later.

The flow patterns for a higher P/E (P/E=20) are shown in Figure 5, where the effect of
Reynolds number can also be clearly observed.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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3.2. Results of temperature field

Figure 6 represents the temperature fields for the case H/E=5, P/E=10. As expected, the
increase in Reynolds number makes the isotherms cluster closer to the surface of the plate
bottom. In addition, it can also be observed that in the near-wall region behind the left rod,
the distribution of the isotherms is finer than that in the near-wall region ahead of the right
rod, indicating different heat transfer intensity in the two regions.

As indicated earlier the rods were assumed to be adiabatic (a–r), hence, all of the isotherms
in Figure 6 are normal to the rod surfaces. It is interesting to compare the results with those
obtained using isothermal rods (i–r). Figure 7 provides isotherms for a channel with
isothermal rods. In both sets of plots, the interval between two neighboring isotherm lines in
Figures 6 and 7 was the same. It can be seen that, apart from the near-rod region, the
isotherms in the near-wall region for the i–r case are not appreciably as fine as those for the
a–r case under the same Reynolds number. This implies that the heat transfer process at the
bottom of the i–r case is not as intensive as that of the a–r case.

3.3. Results of heat transfer and friction

Attention is now turned to the characteristics of heat transfer and friction. Before discussing
the results, the definitions of the local Nusselt number, the average Nusselt number and the
friction factor will be introduced.

Figure 5. Flow patterns at different Reynolds numbers (H/E=3.33, P/E=20). (a) Re=50; (b) Re=200; (c)
Re=400; (d) Re=700.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Figure 6. Temperature fields at different Reynolds numbers (H/E=5, P/E=10). (a) Re=50; (b) Re=200; (c)
Re=400; (d) Re=700.

The local Nusselt number Nu(x) takes the conventional definition,

Nu(x)= −
k ·De

Tb−Tw

·
(T(x, y)
(y

�y=0, (14)

and the average Nusselt number per cycle is defined as

Num=
1
P
&

0

P

Nu(x) dx. (15)

The Darcy definition is adopted for the friction factor:

f=
(−dp/dx)De

1
2rū2 =

[p̄(0)− p̄(P)]De
1
2rū2P

, (16)

where

p̄(0)=
1

H−E
&

E

H

p(0, y) dy, (17)

p̄(P)=
1

H−E
&

E

H

p(P, y) dy. (18)

In order to compare the friction factors of the present channels with those of the smooth
parallel-plate duct at the same Reynolds number, the velocity used in Equation (16) is the
average value in the middle of the cycle.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Typical distributions of the local Nusselt numbers are presented in Figure 8 for the case of
H/E=5, P/E=10, 15, 20. In the figure the abscissa indicates the axial location, so the curve
of Nu(x)–x represents the variation of the local heat transfer coefficients with the flow
development in a periodically fully-developed cycle. Nu(x) increases very quickly with x
immediately after the left rod, reaches a maximum, and thereafter, gradually decreases. As
approaching the right rod, Nu(x) drops quickly and is near zero at the end of one cycle. The
maximum of Nu(x) corresponds to the reattachment point of the flow. One can also see that
the relative distance P/E has a significant influence on the heat transfer of the surface. With
the decrease of P/E the heat transfer is apparently enhanced. Figure 8(a,b,c) indicates that the
effects of the Reynolds number on heat transfer become stronger at lower values of P/E. For
a fixed P/E, the distributions of Nu(x) change drastically with Reynolds number. The higher
the Reynolds number, the larger Nu(x), except for the vicinity of the rods, where the local
Nusselt numbers at different Reynolds number cluster together. For each case, the local
Nusselt number curve has a maximum. For a fixed geometric condition, the position of the
maximum moves slightly downstream with the increase of Re. This may be attributed to the
extension of the recirculating zone behind the rod with the Reynolds number (see Figure 4). It
is interesting to note that the pattern of the local Nusselt number distribution curve predicted
in this paper is quite similar to the test results presented in Reference [1], where experiments
were conducted for the two-dimensional turbulent heat transfer in rod-roughened channels.
The similarity between the distributions of the local Nusselt number of the present laminar
flow predictions and the experimental turbulent results in Reference [1] gives support for the
reliability of this numerical work.

Figure 7. Temperature fields of roughened duct with isothermal disturbances (H/E=5, P/E=10). (a) Re=50; (b)
Re=200; (c) Re=400; (d) Re=700.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Figure 9. Influence of P/E on Nu(x) (H/E=5, P/E=10–50).

Figures 9 and 10 represent the effects of P/E and H/E respectively, on the local Nusselt
number at Re=700. From these figures, the following two features may be noted. First, at a
fixed value of H/E, the Nusselt number increases with the decrease in P/E. However, for the
cases studied (H/E=5, P/E=10–50), the Nu(x)�P/E dependency is very weak when
P/E\20. This is because when the distance between two neighboring rods is large enough, the
existence of the second rod does not have appreciable affect on the flow pattern behind the
first rod. Secondly, at a fixed P/E, the Nusselt number increases with the decrease in H/E. This
is because the shortening of channel height relative to the rod makes the disruption effect of
the rod to the flow field more significant, leading to a further enhancement of heat transfer.

Figure 10. Influence of H/E on Nu(x) (H/E=4.17–6.25, P/H=4).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Figure 11. Per cycle average Nusselt number and friction factor (Re=50–700). (a) H/E=5; (b) H/E=5; (c)
H/E=3.33; (d) H/E=3.33.

Attention is now turned to the average heat transfer and the friction factor characteristics.
The predicted results for cases of H/E=3.33 and 5 are presented against Reynolds number in
Figure 11, with P/E as parameter. For the situation of H/E=5, heat transfer of the ducts with
disturbances is augmented compared with that of smooth channels. As mentioned in the
literature [6,7,9–11] the Nusselt number for the laminar channels with roughness elements
depends strongly on Reynolds number, in contrast to the constant Nusselt number for the
laminar flow in smooth channel. For the case of H/E=5, P/E=7.5 and Re=700 the average
Nusselt number, Num, reaches more than 4-fold of the smooth channel’s value 7.541. However,
it can be seen from Figure 11(a) that for the five roughened cases, Num approaches 7.541 when
Re decreases. The results shown in Figure 11(c) for the case of H/E=3.33 exhibit a somewhat
more complex character. For P/E=20 and 13.3 the results are similar to those in Figure 11(a).
The result of P/E=6.67 is quite different. Here, the heat transfer is not enhanced, rather, it

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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is attenuated. And as Re increases the extent of attenuation is accentuated. The reason for this
is that at a higher relative height of the disturbance rods and smaller P/E, the recirculating
region takes a large part of the plate surface, where the heat transfer is deteriorated because
of the separation between the main flow and the wall surface. This trend is accentuated as Re
increases (Figure 12). Thus, for the purpose of heat transfer enhancement, large relative height
of the disturbance rods is not recommended. This type of character can also be observed from
Figure 11(a), where for the case of H/E=5, the variation of Num with P/E is presented. It
shows that from P/E=20–7.5, heat transfer increases with the decrease of P/E, whereas Num

decreases as P/E approaches 5. Thus it can be inferred that for each value of H/E there exists
a value of P/E at which the average Nusselt number reaches maximum.

As the Reynolds number definition is adopted the smooth plate-channel case, the variation
of the friction factor for the ducts with disturbances presented in Figure 11(b,d) can be
compared with that of corresponding smooth channel directly. Firstly, the friction factor in
any case is higher than that of the smooth parallel channel at the same Re, as expected. The
varying trend of f with Re shown in Figure 11(b) is quite similar to that provided in Reference
[9], where the deviation of the friction factors between disturbed and smooth ducts usually
becomes larger as Re increases. Whether the augmentation in heat transfer is attained or not,
the pressure drop always increases with the decrease of P/E for a constant H/E. This is
especially apparent for the case of H/E=3.33, P/E=6.67, where no heat transfer augmenta-
tion is obtained, while the corresponding friction factor line is located topmost (Figure 11(d)).
It should be noted that despite the increase of Nu for most cases, the penalty in pressure drop
is usually large. For example, for the case H/E=5, P/E=7.5 and Re=700, the augmentation
effect is about four times, and the pressure drop of the disturbed channel is about 20 times that
of the smooth channel. The fact that the friction factor increases much faster than the increase
in heat transfer by the presence of the disturbed rods requires that further analysis be
performed to assess the net effect of the rods. This assessment will be made by comparing the
enhanced ducts with a corresponding smooth plate channel. The comparison is carried out
under the constraint of constant pumping power. As indicated in Reference [2], for fixed duct
dimensions and equal thermophysical properties, the constraint of constant pumping power
becomes

fRe3= (fRe3)*, (19)

where the left-hand-side refers to the enhanced case, while the right-hand-side corresponds to
the baseline case. This equation gives a relation between Re and Re*. For a given value of

Figure 12. Effects of Reynolds number on the flow pattern.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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Figure 13. Heat transfer performance of roughened duct studied. (a) H/E=5; (b) H/E=3.33.

Re*, the corresponding Re of a roughened duct may be obtained via iteration calculation using
Equation (19).

The thermal performance of the roughened ducts is assessed by the relation of Nu/Nu*�
Re*, where Nu* is the Nusselt number for the baseline case and Nu corresponds to Re for the
roughened case. The numerical results are presented in Figure 13. It can be seen that in the
geometric parameter range studied, the largest value of Nu/Nu* for the H/E=5 duct is :2.3.
For some other cases (e.g. H/E=3.33, P/E=6.67), the value of Nu/Nu* is less than unity.
Therefore it can be concluded that if the geometrical parameters are selected with care, the use
of the periodic rod disturbances does provide some merit.

Finally the heat transfer characteristics of roughened ducts with isothermal disturbances will
be discussed. The temperature fields at this condition have been described in Figure 7. The

Figure 14. Local and average Nusselt number for duct with isothermal disturbances (H/E=5, P/E=10). (a) local; (b)
average.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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local and average Nusselt numbers are shown in Figure 14(a,b), respectively. Although the
flow fields are identical, the distributions of Nu(x) shown in Figure 14(a) and Figure 8(a) are
apparently different. The major difference lies in the fact that the maximum Nu(x) in Figure
14(a) is smaller than the corresponding one in Figure 8(a). In addition, with the decrease in
Reynolds number, the peaks on the Nu(x) curve gradually disappear for the isothermal case.
The per cycle average Nusselt numbers for the two rod thermal boundary conditions also
exhibit a large difference (Figure 14(b)). The average Nusselt number for the adiabatic case is
always greater than the isothermal one, and for Re=400, the difference is as large as 40%. It
should be noted that in order to keep the comparison at an equal level, when calculating the
Nusselt number for the i–r case, the heat transfer across the rod surface is not taken into
account. When ReB250, the value of Num for the isothermal case is B7.541, the value of
Nusselt number for a smooth parallel-plate channel in fully developed region. This is quite
different to the turbulent flow case, for which both experiments [20,21] and numerical
computations [22] have shown that the rod boundary thermal condition does not have a
significant effect on the per cycle average Nusselt number.

4. CONCLUSIONS

The fully developed laminar flow and heat transfer in parallel-plate channels with adiabatic
streamwise-periodic rod disturbances have been investigated numerically using the BFC
technique. The influences of P/E, H/E and Re on the flow and heat transfer characteristics
have been studied with Prandtl number equal to 0.71.

Thermal performance of the roughened ducts has been assessed by comparing them with the
smooth parallel-plate channel with the constraint of constant pumping power. A brief
comparison between the cases of adiabatic rods and isothermal rods has also been made.

The distribution pattern of the local Nusselt number is quite similar to that of experimental
turbulent flow results found in the literature. In the range of Re=50–700, the appropriate
geometric parameters P/E and H/E range respectively, from eight to 20 and from four to five,
where the ratio of Nu/Nu* varies from 1.04 to 2.29. The thermal boundary condition of the
rods has an appreciable effect on the per cycle average Nusselt number, and the case of
adiabatic rods gives a higher value of the Nusselt number.
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APPENDIX A. NOMENCLATURE

a air thermal diffusion coefficient
sectional areaA
equivalent diameter of ductDe
diameter of the rod disturbanceE

f friction factor
Gres convergence criterion
H half height of the duct

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1371–1387 (1998)
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k air thermal conductivity
Nusselt numberNu

p fluid pressure
P pitch of the rod disturbance

pressure periodic variablep %
Pr Prandtl number
Re Reynolds number
T fluid temperature
Tb sectional bulk temperature

wall temperatureTw

u, 6 velocity components
x, y Cartesian co-ordinates

Greek symbols

cycle mean pressure gradientb

f representative of u, 6 or T
n air viscosity coefficient
u dimensionless temperature
r air density

Subscripts

m mean value
* baseline case
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