49 research outputs found

    Sub-Band Knowledge Distillation Framework for Speech Enhancement

    Full text link
    In single-channel speech enhancement, methods based on full-band spectral features have been widely studied. However, only a few methods pay attention to non-full-band spectral features. In this paper, we explore a knowledge distillation framework based on sub-band spectral mapping for single-channel speech enhancement. Specifically, we divide the full frequency band into multiple sub-bands and pre-train an elite-level sub-band enhancement model (teacher model) for each sub-band. These teacher models are dedicated to processing their own sub-bands. Next, under the teacher models' guidance, we train a general sub-band enhancement model (student model) that works for all sub-bands. Without increasing the number of model parameters and computational complexity, the student model's performance is further improved. To evaluate our proposed method, we conducted a large number of experiments on an open-source data set. The final experimental results show that the guidance from the elite-level teacher models dramatically improves the student model's performance, which exceeds the full-band model by employing fewer parameters.Comment: Published in Interspeech 202

    Body length of bony fishes was not a selective factor during the biggest mass extinction of all time

    Get PDF
    The Permo-Triassic mass extinction devastated life on land and in the sea, but it is not clear why some species survived and others went extinct. One explanation is that lineage loss during mass extinctions is a random process in which luck determines which species survive. Alternatively, a phylogenetic signal in extinction may indicate a selection process operating on phenotypic traits. Large body size has often emerged as an extinction risk factor in studies of modern extinction risk, but this is not so commonly the case for mass extinctions in deep time. Here, we explore the evolution of non-teleostean Actinopterygii (bony fishes) from the Devonian to the present day, and we concentrate on the Permo-Triassic mass extinction. We apply a variety of time-scaling metrics to date the phylogeny, and show that diversity peaked in the latest Permian and declined severely during the Early Triassic. In line with previous evidence, we find the phylogenetic signal of extinction increases across the mass extinction boundary: extinction of species in the earliest Triassic is more clustered across phylogeny compared to the more randomly distributed extinction signal in the late Permian. However, body length plays no role in differential survival or extinction of taxa across the boundary. In the case of fishes, size did not determine which species survived and which went extinct, but phylogenetic signal indicates that the mass extinction was not a random field of bullets

    Establishment of the Luoping Biota National Geopark in Yunnan, China

    Get PDF
    Geoparks in China have been a great success story, with 284 national geoparks and 41 of them accorded UNESCO international status, the highest number for any country in the world. We track the progress of one of the geoparks, Luoping Biota National Geopark in Yunnan Province, from initial plans after its discovery as a key site for the exceptional preservation of Middle Triassic marine fossils in 2007, to acceptance as a National Geopark in 2011. Geoparks combine great scientific importance with accessibility and attraction for tourists. The scientific importance of Luoping is in the fossils, thousands of specimens of marine invertebrates, fishes and reptiles, together with rare elements from land (e.g. insects, plants), representing an important phase in the Mesozoic Marine Revolution, when life was recovering from devastation at the end of the Permian, and 8 million years later, had developed stable ecosystems with a new structure, dominated by predatory fishes and reptiles. The touristic importance of the Luoping Biota Geopark has already been demonstrated by rapid development of facilities and high visitor numbers

    A new millipede (Diplopoda, Helminthomorpha) from the Middle Triassic Luoping biota of Yunnan, Southwest China

    Get PDF
    AbstractA new helminthomorph millipede,Sinosoma luopingensenew genus new species, from the Triassic Luoping biota of China, has 39 body segments, metazonites with lateral swellings that bear a pair of posterolateral pits (?insertion pits for spine bases), and sternites that are unfused to the pleurotergites. This millipede shares a number of characters with nematophoran diplopods, but lacks the prominent dorsal suture characteristic of that order. Other “millipede” material from the biota is more problematic. Millipedes are a rare part of the Luoping biota, which is composed mainly of marine and near-shore organisms. Occurrences of fossil millipedes are exceedingly rare in Triassic rocks worldwide, comprising specimens from Europe, Asia, and Africa, and consisting of juliform millipedes and millipedes that are either nematophorans or forms very similar to nematophorans.</jats:p

    Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China

    Get PDF
    Abstract Horseshoe crabs are classic “living fossils”, supposedly slowly evolving, conservative taxa, with a long fossil record back to the Ordovician. The evolution of their exoskeleton is well documented by fossils, but appendage and soft-tissue preservation is extremely rare. Here we analyse details of appendage and soft-tissue preservation in Yunnanolimulus luopingensis, a Middle Triassic (ca. 244 million years old) horseshoe crab from Yunnan Province, SW China. The remarkable preservation of anatomical details including the chelicerae, five pairs of walking appendages, opisthosomal appendages with book gills, muscles, and fine setae permits comparison with extant horseshoe crabs. The close anatomical similarity between the Middle Triassic horseshoe crabs and their recent analogues documents anatomical conservatism for over 240 million years, suggesting persistence of lifestyle. The occurrence of Carcinoscorpius-type claspers on the first and second walking legs in male individuals of Y. luopingensis indicates that simple chelate claspers in males are plesiomorphic for horseshoe crabs, and the bulbous claspers in Tachypleus and Limulus are derived
    corecore