358 research outputs found
Extrusion properties of a Zr-based bulk metallic glass
The extrusion behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glasses in the supercooled liquid region was investigated. Good extrusion formability was observed under low strain rates at temperatures higher than 395 °C. The metallic glasses were fully extruded without crystallization and failure within the range of T=395–415 °C under strain rates from 5×10−3 s−1 to 5×10−2 s−1, and the deformation behavior of the metallic glasses during the extrusion was found to be in a Newtonian viscous flow mode by a strain rate sensitivity of 1.0.<br /
Microstructures and mechanical properties of as cast Mg‐Zr‐Ca alloys for biomedical applications
The microstructures and mechanical properties of as cast Mg-Zr-Ca alloys were investigated for potential use in biomedical applications. The Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9 mass-%), Ca (99.9 mass-%) and master Mg-33 mass-%Zr alloy. The microstructures of the alloys were examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the Mg-Zr-Ca alloys with 1 mass-%Ca are composed of one single a phase; these alloys with 2 mass-%Ca consist of both Mg 2Ca and α phase, and all the alloys exhibit typical coarse microstructures. An increase in Zr increases the strength of Mg-Zr-Ca alloys with 1 mass-%Ca, and the formation of Mg2Ca decreases the strength of the alloys. Mg-1Zr-1Ca alloy (mass-%) has the highest strength and best ductility among all the studied alloys
Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach
Exact diagonalization results are reported for the lowest rotational band of
N=6 electrons in strong magnetic fields in the range of high angular momenta 70
<= L <= 140 (covering the corresponding range of fractional filling factors 1/5
>= nu >= 1/9). A detailed comparison of energetic, spectral, and transport
properties (specifically, magic angular momenta, radial electron densities,
occupation number distributions, overlaps and total energies, and exponents of
current-voltage power law) shows that the recently discovered
rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)]
provide a superior description compared to the
composite-fermion/Jastrow-Laughlin ones.Comment: Extensive clarifications were added (see new footnotes) regarding the
difference between the rotating Wigner molecule and the bulk Wigner crystal;
also regarding the influence of an external confining potential. 12 pages.
Revtex4 with 6 EPS figures and 5 tables . For related papers, see
http://www.prism.gatech.edu/~ph274c
Tomonaga-Luttinger parameters for quantum wires
The low-energy properties of a homogeneous one-dimensional electron system
are completely specified by two Tomonaga-Luttinger parameters and
. In this paper we discuss microscopic estimates of the values of
these parameters in semiconductor quantum wires that exploit their relationship
to thermodynamic properties. Motivated by the recognized similarity between
correlations in the ground state of a one-dimensional electron liquid and
correlations in a Wigner crystal, we evaluate these thermodynamic quantities in
a self-consistent Hartree-Fock approximation. According to our calculations,
the Hartree-Fock approximation ground state is a Wigner crystal at all electron
densities and has antiferromagnetic order that gradually evolves from
spin-density-wave to localized in character as the density is lowered. Our
results for are in good agreement with weak-coupling perturbative
estimates at high densities, but deviate strongly at low
densities, especially when the electron-electron interaction is screened at
long distances. vanishes at small carrier density
whereas we conjecture that when , implying that
should pass through a minimum at an intermediate density.
Observation of such a non-monotonic dependence on particle density would allow
to measure the range of the microscopic interaction. In the spin sector we find
that the spin velocity decreases with increasing interaction strength or
decreasing . Strong correlation effects make it difficult to obtain fully
consistent estimates of from Hartree-Fock calculations. We
conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit where
is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include
Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis
Background: Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results: Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions: This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in the induction and maintenance of pulpitic and other types of pain
Internal W-emmission and W-exchange Contributions to {\bf B}\to {{\bf D}^{(*)} Decays
We evaluate external -emission, internal -emission and -exchange
contributions to nonleptonic decays based on the perturbative
QCD formalism including Sudakov effects, whose ratio is found to be
at the amplitude level. We observe that the internal
-emission contribution is additive to the external -emission
contribution, and that the -exchange contribution is negligible and mainly
imaginary, its real part being at least one order of magnitude smaller than the
imaginary part. Our predictions are consistent with the CLEO data and with
those obtained by the Bauer-Stech-Wirbel method.Comment: 13 pages, Latex, 1 Postscript fil
In Situ Observations of the Deformation Behavior and Fracture Mechanisms of Ti-45Al-2Nb-2Mn+0.8 vol pct TiB₂
The deformation and fracture mechanisms of a nearly lamellar Ti-45Al-2Nb-2Mn (at. pct) + 0.8 vol pct TiB₂ intermetallic, processed into an actual low-pressure turbine blade, were examined by means of in situ tensile and tensile-creep experiments performed inside a scanning electron microscope (SEM). Low elongation-to-failure and brittle fracture were observed at room temperature, while the larger elongations-to-failure at high temperature facilitated the observation of the onset and propagation of damage. It was found that the dominant damage mechanisms at high temperature depended on the applied stress level. Interlamellar cracking was observed only above 390 MPa, which suggests that there is a threshold below which this mechanism is inhibited. Failure during creep tests at 250 MPa was controlled by intercolony cracking. The in situ observations demonstrated that the colony boundaries are damage nucleation and propagation sites during tensile creep, and they seem to be the weakest link in the microstructure for the tertiary creep stage. Therefore, it is proposed that interlamellar areas are critical zones for fracture at higher stresses, whereas lower stress, high-temperature creep conditions lead to intercolony cracking and fracture.The authors are grateful to Industria de Turbo Propulsores, S.A. for supplying the intermetallic blades. Funding from the Spanish Ministry of Science and Innovation through projects MAT2009-14547-C02-01 and MAT2009-14547-C02-02 is acknowledged. The Madrid Regional Government supported this project partially through the ESTRUMAT grant P2009/MAT-1585. C.J.B. acknowledges the support from Grant SAB2009-0045 from the Spanish Ministry of Education for his sabbatical stage in Madrid.Publicad
An expanded evaluation of protein function prediction methods shows an improvement in accuracy
Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. Keywords: Protein function prediction, Disease gene prioritizationpublishedVersio
An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy
Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging.
Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2.
Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent
- …