82 research outputs found

    A Black-Scholes user's guide to the Bachelier model

    Full text link
    To cope with the negative oil futures price caused by the COVID-19 recession, global commodity futures exchanges temporarily switched the option model from Black--Scholes to Bachelier in 2020. This study reviews the literature on Bachelier's pioneering option pricing model and summarizes the practical results on volatility conversion, risk management, stochastic volatility, and barrier options pricing to facilitate the model transition. In particular, using the displaced Black-Scholes model as a model family with the Black-Scholes and Bachelier models as special cases, we not only connect the two models but also present a continuous spectrum of model choices

    Monodisperse Branched Molybdenum‐Based Bioactive Nanoparticles Significantly Promote Osteogenic Differentiation of Adipose‐Derived Stem Cells

    Full text link
    Adipose‐derived stem cells (ADSCs) are considered to be ideal stem cell sources for bone‐tissue regeneration owing to their ease of collection and high activity. However, the regulation of osteogenic differentiation of ADSCs using biomaterials without adding growth factors is still not satisfactory. For the first time, molybdenum‐doped bioactive glass nanoparticles with a radial porous morphology (Mo‐rBGNs) are reported and their role in the osteogenic differentiation of ADSCs is investigated. The results show that Mo‐rBGNs exhibit radially porous and spherical morphology, relatively homogeneous particle size (200–400 nm), and excellent apatite‐forming bioactivity. They do not affect the proliferation of ADSCs, but significantly regulate their osteogenic differentiation and biomineralization. 5% Mo‐rBGNs significantly enhance the alkaline phosphatase activity and biomineralization ability and promote the osteogenic gene expressions of collagen I secretion and bone sialo protein in ADSCs. A reasonable and promising strategy for designing nanoscale bioactive materials with the excellent osteogenic ability for stem cell–based bone tissue regeneration is provided.Molybdenum‐doped bioactive glass nanoparticles with a radial porous morphology (Mo‐rBGNs) are reported. Mo‐rBGNs exhibit excellent apatite‐forming bioactivity and significantly regulate the osteogenic differentiation and biomineralization of adipose‐derived stem cells (ADSCs). 5% Mo‐rBGNs significantly enhance the alkaline phosphatase activity and osteogenic gene expressions of collagen I secretion and bone sialo protein in ADSCs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150603/1/ppsc201900105-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150603/2/ppsc201900105.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150603/3/ppsc201900105_am.pd

    Association between gene expression and altered resting-state functional networks in type 2 diabetes

    Get PDF
    BackgroundType 2 diabetes (T2DM) is a polygenic metabolic disorder that accelerates brain aging and harms cognitive function. The underlying mechanism of T2DM-related brain functional changes has not been clarified.MethodsResting-fMRI data were obtained from 99 T2DM and 109 healthy controls (HCs). Resting-state functional connectivity networks (RSNs) were separated using the Independent Component Analysis (ICA) method, and functional connectivity (FC) differences between T2DM patients and HCs within the RSNs were detected. A partial least squares (PLS) regression was used to test the relation between gene expression from Allen Human Brain Atlas (AHBA) and intergroup FC differences within RSNs. Then the FC differences-related gene sets were enriched to determine the biological processes and pathways related to T2DM brain FC changes.ResultThe T2DM patients showed significantly increased FC in the left middle occipital gyrus (MOG) of the precuneus network (PCUN) and the right MOG / right precuneus of the dorsal attention network (DAN). FC differences within the PCUN were linked with the expression of genes enriched in the potassium channel and TrkB-Rac1 signaling pathways and biological processes related to synaptic function.ConclusionThis study linked FC and molecular alterations related to T2DM and suggested that the T2DM-related brain FC changes may have a genetic basis. This study hoped to provide a unique perspective to understand the biological substrates of T2DM-related brain changes

    Structure-based virtual screening for novel p38 MAPK inhibitors and a biological evaluation

    Get PDF
    Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine protein kinases that can be activated by extracellular stimuli. MAPK14 (p38α) affects major disease processes, while inhibition of p38α has been shown to have potential therapeutic effects. Many inhibitors targeting p38α have entered clinical trials but have a long development cycle and severe side effects. We developed a multi-step receptor structure-based virtual screening method to screen potential bioactive molecules from SPECS and our MCDB libraries. Compound 10 was identified as a promising p38α inhibitor that may be used in the treatment of p38αMAPK pathway-related diseases, but corollary studies are warranted

    Developmental deficits of MGE-derived interneurons in the Cntnap2 knockout mouse model of autism spectrum disorder

    Get PDF
    Interneurons are fundamental cells for maintaining the excitation-inhibition balance in the brain in health and disease. While interneurons have been shown to play a key role in the pathophysiology of autism spectrum disorder (ASD) in adult mice, little is known about how their maturation is altered in the developing striatum in ASD. Here, we aimed to track striatal developing interneurons and elucidate the molecular and physiological alterations in the Cntnap2 knockout mouse model. Using Stereo-seq and single-cell RNA sequencing data, we first characterized the pattern of expression of Cntnap2 in the adult brain and at embryonic stages in the medial ganglionic eminence (MGE), a transitory structure producing most cortical and striatal interneurons. We found that Cntnap2 is enriched in the striatum, compared to the cortex, particularly in the developing striatal cholinergic interneurons. We then revealed enhanced MGE-derived cell proliferation, followed by increased cell loss during the canonical window of developmental cell death in the Cntnap2 knockout mice. We uncovered specific cellular and molecular alterations in the developing Lhx6-expressing cholinergic interneurons of the striatum, which impacts interneuron firing properties during the first postnatal week. Overall, our work unveils some of the mechanisms underlying the shift in the developmental trajectory of striatal interneurons which greatly contribute to the ASD pathogenesis.This work was supported by The Australian National University (Futures Scheme 2017-2021) and a National Health and Medical research Council (NHMRC) Project Grant (APP1144145) to ND, and the STI2030-Major Projects (2021ZD0202300, 2021ZD0202301) and the Ministry of Science and Technology of China (2021ZD0202300) to DM.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Sex-specific differences in the effect of the atherogenic index of plasma on prediabetes and diabetes in the NHANES 2011–2018 population

    No full text
    Abstract Background Although a great deal of scientific evidence on the epidemiological risk factors for diabetes and prediabetes has been accumulated, there is still insufficient evidence to explore sex-related differences. The aim of this study was to examine sex-specific differences in the effect of the atherogenic index of plasma (AIP) on prediabetes and diabetes. Methods This cross-sectional study included data from 10099 American adults. The exposure variable was the AIP, which was defined as log10 (triglycerides/high-density lipoprotein cholesterol). The outcome variables included prediabetes and diabetes defined by the 2013 American Diabetes Association guidelines. Results The median age (mean ± SD) was 48.51 ± 18.42 years, and the average value (SD) of the AIP was − 0.09 (0.34). The prevalence of prediabetes was 40.24%, and that of diabetes was 21.32%. Overall, there was a significant positive association between the AIP and prediabetes and diabetes (per 1-unit increment in the AIP: OR, 2.49; 95% CI 1.75, 3.54). The multivariate logistic regression model demonstrated that for each unit increment in the AIP, the prediabetes and diabetes prevalence increased 4.96-fold among female participants (OR 4.96, 95% CI 2.68, 9.18) but not among male participants. We found that the AIP was not related to the prevalence of prediabetes or diabetes (OR 1.41; 95% CI 0.87, 2.29) among males. There was an interaction between sex and the AIP (P for interaction < 0.0001). Conclusions This study showed that a higher AIP was significantly associated with an increased prevalence of prediabetes and diabetes, and the above relationships occurred only among women and not men
    corecore