24 research outputs found

    Prion type 2 selection in sporadic Creutzfeldt-Jakob disease affecting peripheral ganglia

    Get PDF
    In sporadic Creutzfeldt–Jakob disease (sCJD), the pathological changes appear to be restricted to the central nervous system. Only involvement of the trigeminal ganglion is widely accepted. The present study systematically examined the involvement of peripheral ganglia in sCJD utilizing the currently most sensitive technique for detecting prions in tissue morphologically. The trigeminal, nodose, stellate, and celiac ganglia, as well as ganglia of the cervical, thoracic and lumbar sympathetic trunk of 40 patients were analyzed with the paraffin-embedded tissue (PET)-blot method. Apart from the trigeminal ganglion, which contained protein aggregates in five of 19 prion type 1 patients, evidence of prion protein aggregation was only found in patients associated with type 2 prions. With the PET-blot, aggregates of prion protein type 2 were found in all trigeminal (17/17), in some nodose (5 of 7) and thoracic (3 of 6) ganglia, as well as in a few celiac (4 of 19) and lumbar (1 of 5) ganglia of sCJD patients. Whereas aggregates of both prion types may spread to dorsal root ganglia, more CNS-distant ganglia seem to be only involved in patients accumulating prion type 2. Whether the prion type association is due to selection by prion type-dependent replication, or due to a prion type-dependent property of axonal spread remains to be resolved in further studies

    PrPSc spreading patterns in the brain of sheep linked to different prion types

    Get PDF
    Scrapie in sheep and goats has been known for more than 250 years and belongs nowadays to the so-called prion diseases that also include e.g. bovine spongiform encephalopathy in cattle (BSE) and Creutzfeldt-Jakob disease in humans. According to the prion hypothesis, the pathological isoform (PrPSc) of the cellular prion protein (PrPc) comprises the essential, if not exclusive, component of the transmissible agent. Currently, two types of scrapie disease are known - classical and atypical/Nor98 scrapie. In the present study we examine 24 cases of classical and 25 cases of atypical/Nor98 scrapie with the sensitive PET blot method and validate the results with conventional immunohistochemistry. The sequential detection of PrPSc aggregates in the CNS of classical scrapie sheep implies that after neuroinvasion a spread from spinal cord and obex to the cerebellum, diencephalon and frontal cortex via the rostral brainstem takes place. We categorize the spread of PrPSc into four stages: the CNS entry stage, the brainstem stage, the cruciate sulcus stage and finally the basal ganglia stage. Such a sequential development of PrPSc was not detectable upon analysis of the present atypical/Nor98 scrapie cases. PrPSc distribution in one case of atypical/Nor98 scrapie in a presumably early disease phase suggests that the spread of PrPSc aggregates starts in the di- or telencephalon. In addition to the spontaneous generation of PrPSc, an uptake of the infectious agent into the brain, that bypasses the brainstem and starts its accumulation in the thalamus, needs to be taken into consideration for atypical/Nor98 scrapie

    Development of an Enzyme-Linked Immunosorbent Assay (ELISA) for the Quantification of ARID1A in Tissue Lysates

    Get PDF
    ARID1A is a subunit of the mammalian SWI/SNF complex, which is thought to regulate gene expression through restructuring chromatin structures. Its gene ARID1A is frequently mutated and ARID1A levels are lowered in several human cancers, especially gynecologic ones. A functional ARID1A loss may have prognostic or predictive value in terms of therapeutic strategies but has not been proposed based on a quantitative method. Hardly any literature is available on ARID1A levels in tumor samples. We developed an indirect enzyme-linked immunosorbent assay (ELISA) for ARID1A based on the current EMA and FDA criteria. We demonstrated that our ELISA provides the objective, accurate, and precise quantification of ARID1A concentrations in recombinant protein solutions, cell culture standards, and tissue lysates of tumors. A standard curve analysis yielded a ‘goodness of fit’ of R2 = 0.99. Standards measured on several plates and days achieved an inter-assay accuracy of 90.26% and an inter-assay precision with a coefficient of variation of 4.53%. When tumor lysates were prepared and measured multiple times, our method had an inter-assay precision with a coefficient of variation of 11.78%. We believe that our suggested method ensures a high reproducibility and can be used for a high sample throughput to determine the ARID1A concentration in different tumor entities. The application of our ELISA on various tumor and control tissues will allow us to explore whether quantitative ARID1A measurements in tumor samples are of predictive value

    Unexpected high frequency of neurofibroma in the celiac ganglion of German cattle

    Get PDF
    In a study originally designed to find potential risk factors for bovine spongiform encephalopathy (BSE) we examined tissues from 403 Holstein Frisian cattle in total. These included 20 BSE cattle and their 236 birth- and feeding cohort animals plus 32 offspring, 103 age, breed and district-matched control cattle and further twelve cattle with neurological signs. In addition to the obex, we examined the celiac ganglion, cervical cranial ganglion, trigeminal ganglion and proximal ganglion of the vagus nerve using histological techniques. Unexpectedly, we found a high number of neurofibroma, a benign peripheral nerve sheath tumor consisting of Schwann cells, fibroblasts and perineural cells. The neurofibroma were present only in the celiac ganglion and found during histologic examination. With a frequency of 9.91% in BSE cattle and their cohorts (case animals) and 9.09% in the age, breed and district matched control animals there seems to be no correlation between the occurrence of BSE and neurofibroma. Benign peripheral nerve sheath tumors have been described more often in cattle than in other domestic animals. Usually, they are incidental macroscopic findings in the thoracic ganglia during meat inspection. To our knowledge, there are no previous systematic histologic studies including bovine celiac ganglia at all. The high incidence of celiac ganglia neurofibroma may play a role in the frequently occurring abomasal displacements in Holstein Frisian cattle as the tumors might cause a gastrointestinal motility disorder. At present a genetic predisposition for these neoplasms cannot be ruled out.Grants ZN 1294 and ZN 2168, Volkswagen Stiftung financed the first years of sample collection, i.e. material from BSE and cohort animals regarding staff and material expenses Project number: 38028266, Deutsche Forschungsgemeinschaft (DFG), was granted for the original study design to identify risk factors for BSE in the cohort animals of BSE animalsSaarland University within the funding programme Open Access Publishing

    Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics

    Get PDF
    Background: Promoter methylation of the DNA repair gene O6 -methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter beneft from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methyla‑ tion is of importance for diagnostic decisions. We experienced that diferent methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specifc PCR assays and pyrosequencing. Results: To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfte sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specifc pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. https://doi.org/ 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. https://doi.org/10.1158/ 1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfte sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion: Our integrated analysis allows to evaluate and redefne co-methylation domains within the MGMT pro‑ moter and to rationalize the practical impact on assays used in daily routine diagnostics

    Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease

    Get PDF
    Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE), or prion disease, occurring in cervids such as white tailed-deer (WTD), mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrPTSE and of PrPTSE-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrPTSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrPTSE was revealed by protein misfolding cyclic amplification (PMCA). Semi-quantitative Western blotting indicated that the concentration of PrPTSE in skeletal muscles of CWD-infected WTD was approximately 2000-10000 -fold lower than in brain tissue. Tissue-blot-analyses revealed that PrPTSE was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans

    Sporadic Creutzfeldt-Jakob disease subtype-specific alterations of the brain proteome: Impact on Rab3a recycling

    Get PDF
    Sporadic Creutzfeldt–Jakob disease (sCJD) is characterized by wide clinical and pathological variability, which is mainly influenced by the conformation of the misfolded prion protein, and by the methionine and valine polymorphism at codon 129 of the prion protein gene. This heterogeneity likely implies differences in the molecular cascade that leads to the development of certain disease phenotypes. In this study, we investigated the proteome of the frontal cortex of patients with the two most common sCJD subtypes (MM1 and VV2) using 2D-DIGE and MS. Analysis of 2D maps revealed that 46 proteins are differentially expressed in the sCJD. Com- mon differential expression was detected for seven proteins, four showed opposite direction of differential expression, and the remaining ones displayed subtype-specific alteration. The highest number of differentially expressed proteins was associated with signal transduction and neuronal activity. Moreover, functional groups of proteins involved in cell cycle and death, as well as in structure and motility included subtype-specific expressed proteins exclusively. The expression of Rab GDP dissociation inhibitor alpha, which regulates Rab3a-mediated neu- rotransmitter release, was affected in both sCJD subtypes that were analyzed. Therefore, we also investigated as to whether Rab3a recycling is altered. Indeed, we found an accumulation of the membrane-associated form, thus the active one, which suggests that dysfunction of the Rab3a-mediated exocytosis might be implicated in sCJD pathologypeerReviewe
    corecore