1,151 research outputs found

    Riparian zones increase regional species richness by harboring different, not more, species

    Get PDF
    Riparian zones are habitats of critical conservation concern worldwide, as they are known to filter agricultural contaminants, buffer landscapes against erosion, and provide habitat for high numbers of species. Here we test the generality of the notion that riparian habitats harbor more species than adjacent upland habitats. Using previously published data collected from seven continents and including taxa ranging from Antarctic soil invertebrates to tropical rain forest lianas and primates, we show that riparian habitats do not harbor higher numbers of species, but rather support significantly different species pools altogether. In this way, riparian habitats increase regional (γ-) richness across the globe by >50%, on average. Thus conservation planners can easily increase the number of species protected in a regional portfolio by simply including a river within terrestrial biodiversity reserves. Our analysis also suggests numerous possible improvements for future studies of species richness gradients across riparian and upland habitats. First, <15% of the studies in our analysis included estimates of more than one taxonomic group of interest. Second, within a given taxonomic group, studies employed variable methodologies and sampling areas in pursuit of richness and turnover estimates. Future analyses of species richness patterns in watersheds should aim to include a more comprehensive suite of taxonomic groups and should measure richness at multiple spatial scales

    The interplay between hormone signaling and defense gene expression in grapevine genotypes carrying genetic resistance against Plasmopara viticola

    Get PDF
    The present study aimed to investigate plant defense related pathways during Plasmopara viticola infection in Vitis vinifera varieties. Plant material consisted of 'Chardonnay' (no Rpv), 'Regent' (Rpv3-1), 'Bronner' (Rpv3-3+Rpv10), 'Calardis Blanc' (Rpv3-1+Rpv3-2), and the breeding selection GF15 (Rpv1+Rpv3-1). Gene expression analysis was carried out for the varieties 'Regent', GF15, 'Bronner', and 'Chardonnay'. Hormonal quantification was performed for jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), indole-3-acetic acid (IAA), and trans-zeatin-ribose (tZR). The samples were collected from plants cultivated in vitro inoculated with Plasmopara viticola sporangia, and collected at 0, 1-, 3-, 5-, and 7-days post inoculation (DPI) for gene expression; and 0, 3, 5, and 7 DPI for hormonal quantification. The results showed an interaction between genotype and time post inoculation in gene expression and hormonal pathways linked with pathogen recognition. Both jasmonate and salicylic acids were involved in the resistance response. The role of stilbenes acting against the pathogen at different times was also confirmed. Changes in the expression of genes linked to cell defense were observed in all evaluated genotypes; however, genotypes with R-loci responded more quickly than the variety without R-loci, activating mechanisms of cell death, resulting in symptoms of hypersensitivity

    Sterile inflammation as a factor in human male infertility: Involvement of Toll like receptor 2, biglycan and peritubular cells

    Get PDF
    Changes in the wall of seminiferous tubules in men with impaired spermatogenesis imply sterile inflammation of the testis. We tested the hypothesis that the cells forming the wall of seminiferous tubules, human testicular peritubular cells (HTPCs), orchestrate inflammatory events and that Toll like receptors (TLRs) and danger signals from the extracellular matrix (ECM) of this wall are involved. In cultured HTPCs we detected TLRs, including TLR2. A TLR-2 ligand (PAM) augmented interleukin 6 (IL-6), monocyte chemo-attractant protein-1 (MCP-1) and pentraxin 3 (PTX3) in HTPCs. The ECM-derived proteoglycan biglycan (BGN) is secreted by HTPCs and may be a TLR2-ligand at HTPCs. In support, recombinant human BGN increased PTX3, MCP-1 and IL-6 in HTPCs. Variable endogenous BGN levels in HTPCs derived from different men and differences in BGN levels in the tubular wall in infertile men were observed. In testes of a systemic mouse model for male infertility, testicular sterile inflammation and elevated estradiol (E2) levels, BGN was also elevated. Hence we studied the role of E2 in HTPCs and observed that E2 elevated the levels of BGN. The anti-estrogen ICI 182,780 blocked this action. We conclude that TLR2 and BGN contribute to sterile inflammation and infertility in man

    Ketamine-derived designer drug methoxetamine: metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MS n

    Get PDF
    Methoxetamine (MXE; 2-(3-methoxyphenyl)-2-(N-ethylamino)-cyclohexanone), a ketamine analog, is a new designer drug and synthesized for its longer lasting and favorable pharmacological effects over ketamine. The aims of the presented study were to identify the phases I and II metabolites of MXE in rat and human urine by GC-MS and LC-high-resolution (HR)-MS n and to evaluate their detectability by GC-MS and LC-MSn using authors’ standard urine screening approaches (SUSAs). Furthermore, human cytochrome P450 (CYP) enzymes were identified to be involved in the initial metabolic steps of MXE in vitro, and respective enzyme kinetic studies using the metabolite formation and substrate depletion approach were conducted. Finally, human urine samples from forensic cases, where the ingestion of MXE was suspected, were analyzed. Eight metabolites were identified in rat and different human urines allowing postulation of the following metabolic pathways: N-deethylation, O-demethylation, hydroxylation, and combinations as well as glucuronidation or sulfation. The enzyme kinetic studies showed that the initial metabolic step in humans, the N-deethylation, was catalyzed by CYP2B6 and CYP3A4. Both SUSAs using GC-MS or LC-MSn allowed monitoring an MXE intake in urine

    Kinetic alteration of the 6Mg(NH2)2-9LiH-LiBH4 system by co-adding YCl3 and Li3N

    Get PDF
    The 6Mg(NH2)2-9LiH-LiBH4 composite system has a maximum reversible hydrogen content of 4.2 wt% and a predicted dehydrogenation temperature of about 64 °C at 1 bar of H2. However, the existence of severe kinetic barriers precludes the occurrence of de/re-hydrogenation processes at such a low temperature (H. Cao, G. Wu, Y. Zhang, Z. Xiong, J. Qiu and P. Chen, J. Mater. Chem. A, 2014, 2, 15816-15822). In this work, Li3N and YCl3 have been chosen as co-additives for this system. These additives increase the hydrogen storage capacity and hasten the de/re-hydrogenation kinetics: a hydrogen uptake of 4.2 wt% of H2 was achieved in only 8 min under isothermal conditions at 180 °C and 85 bar of H2 pressure. The re-hydrogenation temperature, necessary for a complete absorption process, can be lowered below 90 °C by increasing the H2 pressure above 185 bar. Moreover, the results indicate that the hydrogenation capacity and absorption kinetics can be maintained roughly constant over several cycles. Low operating temperatures, together with fast absorption kinetics and good reversibility, make this system a promising on-board hydrogen storage material. The reasons for the improved de/re-hydrogenation properties are thoroughly investigated and discussed

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio
    • …
    corecore