19,607 research outputs found

    Three small transiting planets around the M dwarf host star LP 358-499

    Full text link
    We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a Gigayear. The three detected planets K2-133 b, c, and d have orbital periods of ca. 3, 4.9 and 11 days and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate in the system (EPIC 247887989.01) with a period of 26.6 days and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.Comment: Accepted for publication in MNRAS Letters. Replaced previous arXiv version with final submitted versio

    Saturn orbiter mission study

    Get PDF
    A preliminary analysis of the important aspects of missions orbiting the planet Saturn is provided. Orbital missions to Saturn is given serious consideration for the 1980's, or after flybys by Pioneer 10/G and Mariner Jupiter-Saturn 1977. An attempt is made to characterize Saturn orbiters in detail so that comparisons with Jupiter missions can be made. The scientific objectives of Saturn exploration are grouped under four topics: (1) the atmosphere, (2) the magnetosphere, (3) the rings, and (4) the satellites

    The Adiabatic Invariance of the Action Variable in Classical Dynamics

    Get PDF
    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well-known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of explicit calculations for the harmonic oscillator. The new proof makes essential use of the Hamiltonian formalism. The key step is the introduction of a slowly-varying quantity closely related to the action variable. This new quantity arises naturally within the Hamiltonian framework as follows: a canonical transformation is first performed to convert the system to action-angle coordinates; then the new quantity is constructed as an action integral (effectively a new action variable) using the new coordinates. The integration required for this construction provides, in a natural way, the averaging procedure introduced in other proofs, though here it is an average in phase space rather than over time.Comment: 8 page

    Optical image of a cometary nucleus: 1980 flyby of Comet Encke

    Get PDF
    The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle)

    EAGLE ISS - A modular twin-channel integral-field near-IR spectrograph

    Full text link
    The ISS (Integral-field Spectrograph System) has been designed as part of the EAGLE Phase A Instrument Study for the E-ELT. It consists of two input channels of 1.65x1.65 arcsec field-of-view, each reconfigured spatially by an image-slicing integral-field unit to feed a single near-IR spectrograph using cryogenic volume-phase-holographic (VPH) gratings to disperse the image spectrally. A 4k x 4k array detector array records the dispersed images. The optical design employs anamorphic magnification, image slicing, VPH gratings scanned with a novel cryo-mechanism and a three-lens camera. The mechanical implementation features IFU optics in Zerodur, a modular bench structure and a number of high-precision cryo-mechanisms.Comment: 12 pages, to be published in Proc SPIE 7735: Ground-based & Airborne Instrumentation for Astronomy II

    How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse

    Get PDF
    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model

    Sediment Management for Southern California Mountians, Coastal Plains and Shoreline. Part D: Special Inland Studies

    Get PDF
    In southern California the natural environmental system involves the continual relocation of sedimentary materials. Particles are eroded from inland areas where there is sufficient relief and, precipitation. Then, with reductions in hydraulic gradient along the stream course and at the shoreline, the velocity of surface runoff is reduced and there is deposition. Generally, coarse sand, gravel and larger particles are deposited near the base of the eroding surfaces (mountains and hills) and the finer sediments are deposited on floodplains, in bays or lagoons, and at the shoreline as delta deposits. Very fine silt and clay particles, which make up a significant part of the eroded material, are carried offshore where they eventually deposit in deeper areas. Sand deposited at the shoreline is gradually moved along the coast by waves and currents, and provides nourishment for local beaches. However, eventually much of this littoral material is also lost to offshore areas. Human developments in the coastal region have substantially altered the natural sedimentary processes, through changes in land use, the harvesting of natural resources (logging, grazing, and sand and gravel mining); the construction and operation of water conservation facilities and flood control structures; and coastal developments. In almost all cases these developments have grown out of recognized needs and have well served their primary purpose. At the time possible deleterious effects on the local or regional sediment balance were generally unforeseen or were felt to be of secondary importance. In 1975 a large-scale study of inland and coastal sedimentation processes in southern California was initiated by the Environmental Quality Laboratory at the California Institute of Technology and the Center for Coastal Studies at Scripps Institution of Oceanography. This volume is one of a series of reports from this study. Using existing data bases, this series attempts to define quantitatively inland and coastal sedimentation processes and identify the effects man has had on these processes. To resolve some issues related to long-term sediment management, additional research and data will be needed. In the series there are four Caltech reports that provide supporting studies for the summary report (EQL Report No. 17). These reports include: EQL Report 17-A Regional Geological History EQL Report 17-B Inland Sediment Movements by Natural Processes EQL Report 17-C Coastal Sediment Delivery by Major Rivers in Southern California EQL Report 17-D -- Special Inland Studies Additional supporting reports on coastal studies (shoreline sedimentation processes, control structures, dredging, etc.) are being published by the Center for Coastal Studies at Scripps Institution of Oceanography, La Jolla, California
    corecore