261 research outputs found

    A Literature Review of Studies Evaluating Rotator Cuff Activation during Early Rehabilitation Exercises for Post-Op Rotator Cuff Repair

    Get PDF
    Despite the modern advancement of surgical repair equipment and techniques, many rotator cuff repairs do not clinically heal. Prescribed rehabilitative exercises must appropriately load the repaired muscle-tendon complex to promote healing and prevent capsular adhesions without damaging the repair. The clinician must possess an understanding of the anatomy and physiology of the healing rotator cuff, and understand the importance of the plane of movement, speed of the movement, position of the extremity, level of assistance, and type of resistance used. Electromyography (EMG) provides a useful means to determine muscle activation levels during specific exercises. Descriptions of specific exercises and EMG activation as they relate to the rotator cuff muscles are described. The specific performance of the exercises, the reliability of such EMG measures, and the descriptive figures are described. Practicing clinicians will benefit from the correct interpretation of the EMG data, and how it can be used in the exercise prescription when formulating a treatment plan

    Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk

    Get PDF
    Both the low animal cell density of bioreactors and their ability to post-translationally process recombinant factor IX (rFIX) limit hemophilia B therapy to transgenic pigs to make rFIX in milk at about 3,000-fold higher output than provided by industrial bioreactors. However, this resulted in incomplete γ-carboxylation and propeptide cleavage where both processes are transmembrane mediated. We then bioengineered the co-expression of truncated, soluble human furin (rFurin) with pro-rFIX at a favorable enzyme to substrate ratio. This resulted in the complete conversion of pro-rFIX to rFIX while yielding a normal lactation. Importantly, these high levels of propeptide processing by soluble rFurin did not preempt γ-carboxylation in the ER and therefore was compartmentalized to the Trans-Golgi Network (TGN) and also to milk. The Golgi specific engineering demonstrated here segues the ER targeted enhancement of γ-carboxylation needed to biomanufacture coagulation proteins like rFIX using transgenic livestock

    Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk

    Get PDF
    Both the low animal cell density of bioreactors and their ability to post-translationally process recombinant factor IX (rFIX) limit hemophilia B therapy to transgenic pigs to make rFIX in milk at about 3,000-fold higher output than provided by industrial bioreactors. However, this resulted in incomplete γ-carboxylation and propeptide cleavage where both processes are transmembrane mediated. We then bioengineered the co-expression of truncated, soluble human furin (rFurin) with pro-rFIX at a favorable enzyme to substrate ratio. This resulted in the complete conversion of pro-rFIX to rFIX while yielding a normal lactation. Importantly, these high levels of propeptide processing by soluble rFurin did not preempt γ-carboxylation in the ER and therefore was compartmentalized to the Trans-Golgi Network (TGN) and also to milk. The Golgi specific engineering demonstrated here segues the ER targeted enhancement of γ-carboxylation needed to biomanufacture coagulation proteins like rFIX using transgenic livestock

    Improvement of in vitro and early in utero porcine clone development after somatic donor cells are cultured under hypoxia

    Get PDF
    Genetically engineered pigs serve as excellent biomedical and agricultural models. To date, the most reliable way to generate genetically engineered pigs is via somatic cell nuclear transfer (SCNT), however, the efficiency of cloning in pigs is low (1–3 percent). Somatic cells such as fibroblasts frequently used in nuclear transfer utilize the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation for efficient energy production. The metabolism of somatic cells contrasts with cells within the early embryo, which predominately use glycolysis. We hypothesized that fibroblast cells could become blastomere-like if mitochondrial oxidative phosphorylation was inhibited by hypoxia and that this would result in improved in vitro embryonic development after SCNT. In a previous study, we demonstrated that fibroblasts cultured under hypoxic conditions had changes in gene expression consistent with increased glycolytic/gluconeogenic metabolism. The goal of this pilot study was to determine if subsequent in vitro embryo development is impacted by cloning porcine embryonic fibroblasts cultured in hypoxia. Here we demonstrate that in vitro measures such as early cleavage, blastocyst development, and blastocyst cell number are improved (4.4 percent, 5.5 percent, and 17.6 cells, respectively) when donor cells are cultured in hypoxia before nuclear transfer. Survival probability was increased in clones from hypoxic cultured donors compared to controls (8.5 vs. 4.0 [plus or minus] 0.2). These results suggest that the clones from donor cells cultured in hypoxia are more developmentally competent and this may be due to improved nuclear reprogramming during somatic cell nuclear transfer

    FlexOracle: predicting flexible hinges by identification of stable domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein motions play an essential role in catalysis and protein-ligand interactions, but are difficult to observe directly. A substantial fraction of protein motions involve hinge bending. For these proteins, the accurate identification of flexible hinges connecting rigid domains would provide significant insight into motion. Programs such as GNM and FIRST have made global flexibility predictions available at low computational cost, but are not designed specifically for finding hinge points.</p> <p>Results</p> <p>Here we present the novel FlexOracle hinge prediction approach based on the ideas that energetic interactions are stronger <it>within </it>structural domains than <it>between </it>them, and that fragments generated by cleaving the protein at the hinge site are independently stable. We implement this as a tool within the Database of Macromolecular Motions, MolMovDB.org. For a given structure, we generate pairs of fragments based on scanning all possible cleavage points on the protein chain, compute the energy of the fragments compared with the undivided protein, and predict hinges where this quantity is minimal. We present three specific implementations of this approach. In the first, we consider only pairs of fragments generated by cutting at a <it>single </it>location on the protein chain and then use a standard molecular mechanics force field to calculate the enthalpies of the two fragments. In the second, we generate fragments in the same way but instead compute their free energies using a knowledge based force field. In the third, we generate fragment pairs by cutting at <it>two </it>points on the protein chain and then calculate their free energies.</p> <p>Conclusion</p> <p>Quantitative results demonstrate our method's ability to predict known hinges from the Database of Macromolecular Motions.</p

    Transcriptomic profile of host response in Japanese encephalitis virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Japanese encephalitis (JE) is one of the leading causes of acute encephalopathy with the highest mortality rate of 30-50%. The purpose of this study was to understand complex biological processes of host response during the progression of the disease. Virus was subcutaneously administered in mice and brain was used for whole genome expression profiling by cDNA microarray.</p> <p>Results</p> <p>The comparison between viral replication efficiency and disease progression confirms the active role of host response in immunopathology and disease severity. The histopathological analysis confirms the severe damage in the brain in a time dependent manner. Interestingly, the transcription profile reveals significant and differential expression of various pattern recognition receptors, chemotactic genes and the activation of inflammasome. The increased leukocyte infiltration and aggravated CNS inflammation may be the cause of disease severity.</p> <p>Conclusion</p> <p>This is the first report that provides a detailed picture of the host transcriptional response in a natural route of exposure and opens up new avenues for potential therapeutic and prophylactic strategies against Japanese encephalitis virus.</p

    In vivo imaging of tau pathology using multi-parametric quantitative MRI

    Get PDF
    As the number of people diagnosed with Alzheimer's disease (AD) reaches epidemic proportions, there is an urgent need to develop effective treatment strategies to tackle the social and economic costs of this fatal condition. Dozens of candidate therapeutics are currently being tested in clinical trials, and compounds targeting the aberrant accumulation of tau proteins into neurofibrillary tangles (NFTs) are the focus of substantial current interest. Reliable, translatable biomarkers sensitive to both tau pathology and its modulation by treatment along with animal models that faithfully reflect aspects of the human disease are urgently required. Magnetic resonance imaging (MRI) is well established as a valuable tool for monitoring the structural brain changes that accompany AD progression. However the descent into dementia is not defined by macroscopic brain matter loss alone: non-invasive imaging measurements sensitive to protein accumulation, white matter integrity and cerebral haemodynamics probe distinct aspects of AD pathophysiology and may serve as superior biomarkers for assessing drug efficacy. Here we employ a multi-parametric array of five translatable MRI techniques to characterise the in vivo pathophysiological phenotype of the rTg4510 mouse model of tauopathy (structural imaging, diffusion tensor imaging (DTI), arterial spin labelling (ASL), chemical exchange saturation transfer (CEST) and glucose CEST). Tau-induced pathological changes included grey matter atrophy, increased radial diffusivity in the white matter, decreased amide proton transfer and hyperperfusion. We demonstrate that the above markers unambiguously discriminate between the transgenic group and age-matched controls and provide a comprehensive profile of the multifaceted neuropathological processes underlying the rTg4510 model. Furthermore, we show that ASL and DTI techniques offer heightened sensitivity to processes believed to precede detectable structural changes and, as such, provides a platform for the study of disease mechanisms and therapeutic intervention

    Tobacco use induces anti-apoptotic, proliferative patterns of gene expression in circulating leukocytes of Caucasian males

    Get PDF
    Abstract Background Strong epidemiologic evidence correlates tobacco use with a variety of serious adverse health effects, but the biological mechanisms that produce these effects remain elusive. Results We analyzed gene transcription data to identify expression spectra related to tobacco use in circulating leukocytes of 67 Caucasian male subjects. Levels of cotinine, a nicotine metabolite, were used as a surrogate marker for tobacco exposure. Significance Analysis of Microarray and Gene Set Analysis identified 109 genes in 16 gene sets whose transcription levels were differentially regulated by nicotine exposure. We subsequently analyzed this gene set by hyperclustering, a technique that allows the data to be clustered by both expression ratio and gene annotation (e.g. Gene Ontologies). Conclusion Our results demonstrate that tobacco use affects transcription of groups of genes that are involved in proliferation and apoptosis in circulating leukocytes. These transcriptional effects include a repertoire of transcriptional changes likely to increase the incidence of neoplasia through an altered expression of genes associated with transcription and signaling, interferon responses and repression of apoptotic pathways
    corecore