9,605 research outputs found

    Investigation of upper-surface-blowing nacelle integration at cruise speeds utilizing powered engine simulators

    Get PDF
    Various overwing nacelle designs were investigated on a representative four engine short haul aircraft configuration during a combined analytical and experimental program. Design conditions were M sub o = 0.7 and C sub L = 0.4. All nacelles had D shaped nozzle exits and included a streamline contoured design, a low boattail angle reference configuration, and a high boattail angle powered lift design. Testing was done with the design four engine airplane configuration as well as with only inboard nacelles installed. Turbopowered engine simulators were used to provide realistic representation of nacelle flows. Performance trends are compared for the various nacelle designs. In addition, comparisons are presented between analytical and experimental pressure distributions and between flow through and powered simulator results

    Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb

    Get PDF
    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion

    Gravity anomaly detection: Apollo/Soyuz

    Get PDF
    The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown

    Wind tunnel and analytical investigation of over-the-wing propulsion/air frame interferences for a short-haul aircraft at Mach numbers from 0.6 to 0.78

    Get PDF
    Results of analytical calculations and wind tunnel tests at cruise speeds of a representative four engine short haul aircraft employing upper surface blowing (USB) with a supercritical wing are discussed. Wind tunnel tests covered a range of Mach number M from 0.6 to 0.78. Tests explored the use of three USB nozzle configurations. Results are shown for the isolated wing body and for each of the three nozzle types installed. Experimental results indicate that a low angle nacelle and streamline contoured nacelle yielded the same interference drag at the design Mach number. A high angle powered lift nacelle had higher interference drag primarily because of nacelle boattail low pressures and flow separation. Results of varying the spacing between the nacelles and the use of trailing edge flap deflections, wing upper surface contouring, and a convergent-divergent nozzle to reduce potential adverse jet effects were also discussed. Analytical comparisons with experimental data, made for selected cases, indicate favorable agreement

    Phase Coexistence Near a Morphotropic Phase Boundary in Sm-doped BiFeO3 Films

    Get PDF
    We have investigated heteroepitaxial films of Sm-doped BiFeO3 with a Sm-concentration near a morphotropic phase boundary. Our high-resolution synchrotron X-ray diffraction, carried out in a temperature range of 25C to 700C, reveals substantial phase coexistence as one changes temperature to crossover from a low-temperature PbZrO3-like phase to a high-temperature orthorhombic phase. We also examine changes due to strain for films greater or less than the critical thickness for misfit dislocation formation. Particularly, we note that thicker films exhibit a substantial volume collapse associated with the structural transition that is suppressed in strained thin films

    Positronium oscillations to Mirror World revisited

    Full text link
    We present a calculation of the branching ratio of orthopositronium decay into an invisible mode, which is done in the context of Mirror World models, where ordinary positronium can disappear from our world due to oscillation into its mirror twin. In this revision we clarify some formulas and approximations used previously, correct them at some places, add new effects relevant for a feasible experiment and finally perform a combined analysis. We include into consideration various effects due to external magnetic and electric fields, collisions with cavity walls and scattering off gas atoms in the cavity. Oscillations of the Rydberg positroniums are also considered. To perform a numerical estimates in a realistic case we wrote computer code, which can be adopted in any experimental setup. Its work is illustrated with an example of a planned positronium experiment within the AEgIS project.Comment: 23 pages, 4 figures, typos corrected, references added, published versio

    ARPES Study of the Metal-Insulator Transition in Bismuth Cobaltates

    Full text link
    We present an angle-resolved photoemission spectroscopy (ARPES) study of a Mott-Hubbard-type bismuth cobaltate system across a metal-insulator transition. By varying the amount of Pb substitution, and by doping with Sr or Ba cation, a range of insulating to metallic properties is obtained. We observe a systematic change in the spectral weight of the coherent and incoherent parts, accompanied by an energy shift of the incoherent part. The band dispersion also shows the emergence of a weakly dispersing state at the Fermi energy with increasing conductivity. These changes correspond with the changes in the temperature-dependent resistivity behavior. We address the nature of the coherent-incoherent parts in relation to the peak-dip-hump feature seen in cuprates superconductors

    Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system

    Full text link
    We have studied the magnetic characteristics of a series of super-oxygenated La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously phase separate into an oxygen rich superconducting phase with a TC near 40 K and an oxygen poor magnetic phase that also orders near 40 K. All samples studied are highly magnetically reversible even to low temperatures. Although the internal magnetic regions of these samples might be expected to act as pinning sites, our present study shows that they do not favor flux pinning. Flux pinning requires a matching condition between the defect and the superconducting coherence length. Thus, our results imply that the magnetic regions are too large to act as pinning centers. This also implies that the much greater flux pinning in typical La2-xSrxCuO4 materials is the result of nanoscale inhomogeneities that grow to become the large magnetic regions in the super-oxygenated materials. The superconducting regions of the phase separated materials are in that sense cleaner and more homogenous than in the typical cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR
    corecore