21 research outputs found
Understanding West German economic growth in the 1950s
We evaluate explanations for why Germany grew so quickly in the 1950s. The recent literature has emphasized convergence, structural change and institutional shake-up while minimizing the importance of the post-war shock. We show that this shock and its consequences were more important than neoclassical convergence and structural change in explaining the rapid growth of the West German economy in the 1950s. We find little support for the hypothesis of institutional shakeup. This suggests a different interpretation of post-World War II German economic growth than features in much of the literature
Plasma leptin is influenced by diet composition and exercise.
OBJECTIVE: A low-fat, high-carbohydrate diet
Metabolic and Endocrine Profiles in Response to Systemic Infusion of Fructose and Glucose in Rhesus Macaques
Diurnal patterns of circulating leptin concentrations are attenuated after consumption of fructose-sweetened beverages compared with glucose-sweetened beverages, likely a result of limited postprandial glucose and insulin excursions after fructose. Differences in postprandial exposure of adipose tissue to peripheral circulating fructose and glucose or in adipocyte metabolism of the two sugars may also be involved. Thus, we compared plasma leptin concentrations after 6-h iv infusions of saline, glucose, or fructose (15 mg/kg·min) in overnight-fasted adult rhesus monkeys (n = 9). Despite increases of plasma fructose from undetectable levels to about 2 mm during fructose infusion, plasma leptin concentrations did not increase, and the change of insulin was only about 10% of that seen during glucose infusion. During glucose infusion, plasma leptin was significantly increased above baseline concentrations by 240 min and increased steadily until the final 480-min time point (change in leptin = +2.5 ± 0.9 ng/ml, P < 0.001 vs. saline; percent change in leptin = +55 ± 16%; P < 0.005 vs. saline). Substantial anaerobic metabolism of fructose was suggested by a large increase of steady-state plasma lactate (change in lactate = 1.64 ± 0.15 mm from baseline), which was significantly greater than that during glucose (+0.53 ± 0.14 mm) or saline (−0.51 ± 0.14 mm) infusions (P < 0.001). Therefore, increased adipose exposure to fructose and an active whole-body anaerobic fructose metabolism are not sufficient to increase circulating leptin levels in rhesus monkeys. Thus, additional factors (i.e. limited post-fructose insulin excursions and/or hexose-specific differences in adipocyte metabolism) are likely to underlie disparate effects of fructose and glucose to increase circulating leptin concentrations