178 research outputs found
Nucleon Polarizabilities from Deuteron Compton Scattering within a Green's-Function Hybrid Approach
We examine elastic Compton scattering from the deuteron for photon energies
ranging from zero to 100 MeV, using state-of-the-art deuteron wave functions
and NN-potentials. Nucleon-nucleon rescattering between emission and absorption
of the two photons is treated by Green's functions in order to ensure gauge
invariance and the correct Thomson limit. With this Green's-function hybrid
approach, we fulfill the low-energy theorem of deuteron Compton scattering and
there is no significant dependence on the deuteron wave function used.
Concerning the nucleon structure, we use Chiral Effective Field Theory with
explicit \Delta(1232) degrees of freedom within the Small Scale Expansion up to
leading-one-loop order. Agreement with available data is good at all energies.
Our 2-parameter fit to all elastic data leads to values for the
static isoscalar dipole polarizabilities which are in excellent agreement with
the isoscalar Baldin sum rule. Taking this value as additional input, we find
\alpha_E^s= (11.3+-0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and \beta_M^s =
(3.2-+0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and conclude by comparison to the
proton numbers that neutron and proton polarizabilities are essentially the
same.Comment: 47 pages LaTeX2e with 20 figures in 59 .eps files, using graphicx.
Minor modifications; extended discussion of theoretical uncertainties of
polarisabilities extraction. Version accepted for publication in EPJ
Nucleon Spin-Polarisabilities from Polarisation Observables in Low-Energy Deuteron Compton Scattering
We investigate the dependence of polarisation observables in elastic deuteron
Compton scattering below the pion production threshold on the spin-independent
and spin-dependent iso-scalar dipole polarisabilities of the nucleon. The
calculation uses Chiral Effective Field Theory with dynamical Delta(1232)
degrees of freedom in the Small Scale Expansion at next-to-leading order.
Resummation of the NN intermediate rescattering states and including the Delta
induces sizeable effects. The analysis considers cross-sections and the
analysing power of linearly polarised photons on an unpolarised target, and
cross-section differences and asymmetries of linearly and circularly polarised
beams on a vector-polarised deuteron. An intuitive argument helps one to
identify kinematics in which one or several polarisabilities do not contribute.
Some double-polarised observables are only sensitive to linear combinations of
two of the spin-polarisabilities, simplifying a multipole-analysis of the data.
Spin-polarisabilities can be extracted at photon energies \gtrsim 100 MeV,
after measurements at lower energies of \lesssim 70 MeV provide high-accuracy
determinations of the spin-independent ones. An interactive Mathematica 7.0
notebook of our findings is available from [email protected]: 30 pages LaTeX2e, including 22 figures as 66 .eps file embedded with
includegraphicx; three errors in initial submission corrected. This
submission includes ot the erratum to be published in EPJA (2012) and the
corrections in the tex
mdFoam+: Advanced molecular dynamics in OpenFOAM
This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes
dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver
dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM’s C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results
The epigenetic evolution of glioma is determined by the IDH1 mutation status and treatment regimen
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histological progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neo-angiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution towards an IDHwt-like phenotype
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
- …