7,252 research outputs found

    Surface sticking probabilities for sputtered atoms of Nb-93 and Rh-103

    Get PDF
    The capture coefficient probabilities for sputtered atoms of Nb-93 and Rh-103 incident on Al2O3 surfaces were measured using the backscattering of MeV heavy ions. In the circumstance where the collecting surface is thickly covered, the sticking probabilities integrated over the energy distribution of sputtered atoms are 0.97 plus or minus 0.01 for Nb-93 and 0.95 plus or minus 0.01 for Rh-103 respectively. In the limit of negligible areal coverage of the collector, the accuracy is less; in this case the sticking probabilities are 0.97 + 0.03 or -0.08 and 0.95 + 0.05 or -0.08

    Analysis of a novel non-contacting waveguide backshort

    Get PDF
    A new non-contacting waveguide backshort has been developed for millimeter and submillimeter wave frequencies. The design consists of a metal bar with rectangular or circular holes cut into it, which is covered with a dielectric (mylar) layer to form a snug fit with the walls of a waveguide. Hole geometries are adjusted to obtain a periodic variation of the guide impedance on the correct length scale, in order to produce efficient reflection of RF power. It is a mechanically rugged design which can be easily fabricated for frequencies from 1 to 1000 GHz and is thus a sound alternative to the miniaturization of conventional non-contacting shorts. To aid in high-frequency design, a rigorous full-wave analysis has been completed, which will allow variations of the size, number and spacing of the holes to be easily analyzed. This paper will review the backshort design and the method developed for theoretical characterization, followed by a comparison of the experimental and numerical results. Low frequency models operating from 4-6 GHz are shown to demonstrate return loss of greater than -0.2 dB over a 33 percent bandwidth. The theory is in good agreement with measured data

    Singlet Ground State and Magnetization Plateaus in Ba3_3Mn2_2O8_8

    Full text link
    Magnetic susceptibility and the magnetization process have been measured in \green polycrystal. In this compound, the magnetic manganese ion exists as Mn5+^{5+} in a tetrahedral environment, and thus the magnetic interaction can be described by an S=1 Heisenberg model. The ground state was found to be a spin singlet with an excitation gap Δ/kB=11.2\Delta/k_{\rm B}=11.2 K. Magnetization plateaus were observed at zero and at half of the saturation magnetization. These results indicate that the present system can be represented by a coupled antiferromagnetic dimer model.Comment: 4 pages, 4 figures, jpsj styl

    Deuteron Compton Scattering in Effective Field Theory: Spin-Dependent Cross Sections and Asymmetries

    Full text link
    Polarized Compton scattering on the deuteron is studied in nuclear effective field theory. A set of tensor structures is introduced to define 12 independent Compton amplitudes. The scalar and vector amplitudes are calculated up to O((Q/Λ)2){\cal O}((Q/\Lambda)^2) in low-energy power counting. Significant contribution to the vector amplitudes is found to come from the spin-orbit type of relativistic corrections. A double-helicity dependent cross section Δ1σ=(σ+1−1−σ+1+1)/2\Delta_1 \sigma = (\sigma_{+1-1}-\sigma_{+1+1})/2 is calculated to the same order, and the effect of the nucleon isoscalar spin-dependent polarizabilities is found to be smaller than the effect of isoscalar spin-independent ones. Contributions of spin-independent polarizabilities are investigated in various asymmetries, one of which has as large as 12 (26) percent effect at the center-of-mass photon energy 30 (50) MeV.Comment: 22 pages, 8 figures included, replaced with the version submitted to PR

    Explaining Convolutional Neural Networks by Tagging Filters

    Get PDF
    Convolutional neural networks (CNNs) have achieved astonishing performance on various image classification tasks, but it is difficult for humans to understand how a classification comes about. Recent literature proposes methods to explain the classification process to humans. These focus mostly on visualizing feature maps and filter weights, which are not very intuitive for non-experts. In this paper, we propose FilTag, an approach to effectively explain CNNs even to non-experts. The idea is that if images of a class frequently activate a convolutional filter, that filter will be tagged with that class. Based on the tagging, individual image classifications can then be intuitively explained using the tags of the filters that the input image activates. Finally, we show that the tags are useful in analyzing classification errors caused by noisy input images and that the tags can be further processed by machines

    Domain Dynamics of Magnetic Films with Perpendicular Anisotropy

    Full text link
    We study the magnetic properties of nanoscale magnetic films with large perpendicular anisotropy comparing polarization microscopy measurements on Co_28Pt_72 alloy samples based on the magneto-optical Kerr effect with Monte Carlo simulations of a corresponding micromagnetic model. We focus on the understanding of the dynamics especially the temperature and field dependence of the magnetisation reversal process. The experimental and simulational results for hysteresis, the reversal mechanism, domain configurations during the reversal, and the time dependence of the magnetisation are in very good qualitative agreement. The results for the field and temperature dependence of the domain wall velocity suggest that for thin films the hysteresis can be described as a depinning transition of the domain walls rounded by thermal activation for finite temperatures.Comment: 7 pages Latex, Postscript figures included, accepted for publication in Phys.Rev.B, also availible at: http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm

    Optical second harmonic generation probe of two-dimensional ferroelectricity

    Get PDF
    Optical second harmonic generation (SHG) is used as a noninvasive probe of two-dimensional (2D) ferroelectricity in Langmuir-Blodgett (LB) films of copolymer vinylidene fluoride with trifluorethylene. The surface 2D ferroelectric-paraelectric phase transition in the topmost layer of LB films and a thickness independent (almost 2D) transition in the bulk of these films are observed in temperature studies of SHG.Comment: 9 pages, 2 figures, Optics Letters, in prin

    Stable ultrahigh-density magneto-optical recordings using introduced linear defects

    Full text link
    The stability of data bits in magnetic recording media at ultrahigh densities is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized spin domains, which erase the stored information. Media that are magnetized perpendicular to the plane of the film, such as ultrathin cobalt films or multilayered structures, are more stable against thermal self-erasure than conventional memory devices. In this context, magneto-optical memories seem particularly promising for ultrahigh-density recording on portable disks, and bit densities of ∼\sim100 Gbit inch−2^{-2} have been demonstrated using recent advances in the bit writing and reading techniques. But the roughness and mobility of the magnetic domain walls prevents closer packing of the magnetic bits, and therefore presents a challenge to reaching even higher bit densities. Here we report that the strain imposed by a linear defect in a magnetic thin film can smooth rough domain walls over regions hundreds of micrometers in size, and halt their motion. A scaling analysis of this process, based on the generic physics of disorder-controlled elastic lines, points to a simple way by which magnetic media might be prepared that can store data at densities in excess of 1 Tbit inch−2^{-2}.Comment: 5 pages, 4 figures, see also an article in TRN News at http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm
    • …
    corecore