82 research outputs found

    Secreção de enzimas mediada pelo pH do ambiente em isolados patogênicos e endofíticos do fungo Colletotrichum

    Get PDF
    Em fungos, um sistema de regulação gênica garante que enzimas sejam secretadas predominantemente em valores de pH do ambiente próximos aos pH ótimos de atividade correspondentes. Embora muita informação tenha sido acumulada sobre essa resposta adaptativa, não existem estudos envolvendo fungos fitopatogênicos, endofíticos e entomopatogênicos, bem como sobre outros aspectos relacionados às interações fungo-hospedeiro. No presente trabalho foi comparado, em meio sólido, o efeito do pH do ambiente na secreção das enzimas amilase, celulase, lipase, pectinase e protease por isolados endofíticos, fitopatogênico e entomopatogênicos pertencentes a diferentes espécies de Colletotrichum. Para todas as enzimas e em todos os isolados, observou-se um padrão de secreção dependente dos valores do pH do ambiente. Isolados endofíticos e patogênicos apresentaram padrões distintos de secreção de protease, com ótimos em pH de crescimento alcalino e ácido, respectivamente. Em meio líquido, uma fosfatase ácida Pi-repressível, secretada por um isolado endofítico, respondeu ao pH do ambiente, apresentando um aumento de 14 vezes na sua atividade específica durante o crescimento do fungo em meio ácido, quando comparado a meio alcalino. Além disso, foi clonada parte do gene pacC de Colletotrichum, o qual codifica um fator de transcrição responsável pela regulação dependente do pH do ambiente. É plausível a hipótese de que o pH ambiente é um fator de amplo espectro controlando a secreção enzimática durante as interações fungo-hospedeiro por meio de um circuito genético conservado.In fungi a genetic system ensures that enzymes are secreted mainly at ambient pH values corresponding to their optima of activity. Although a great deal of information has been obtained concerning this environmental response, there is a lack of studies involving phytopathogenic, endophytic and entomopathogenic fungi as well as different aspects of fungus-host interactions. This study compares in a plate-clearing assays, the effect of ambient pH in the secretion of amylase, cellulase, lipase, pectinase and protease by endophytic, phytopathogenic, and entomopathogenic isolates belonging to several species of Colletotrichum. All enzymes were secreted in a pH-dependent manner by all isolates. Endophytes and pathogens showed distinct patterns of protease secretion, with optima at alkaline and acid growth conditions, respectively. In liquid medium, a Pi-repressible acid phosphatase of an endophytic isolate responded to ambient pH, having a 14-fold increase in secreted specific activity at acid pH, as compared to alkaline pH. Furthermore, part of a Colletotrichum pacC homologue gene, coding for a transcriptional factor responsible for pH-regulated gene expression, was cloned. Ambient pH seems to be a general factor controlling enzyme secretion in fungus-host interactions through a conserved genetic circuit

    Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association

    Get PDF
    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant

    The Diversity of Endophytic Methylotrophic Bacteria in an Oil-Contaminated and an Oil-Free Mangrove Ecosystem and Their Tolerance to Heavy Metals

    Get PDF
    Methylobacterium strains were isolated from mangrove samples collected in Bertioga, SP, Brazil, from locations either contaminated or uncontaminated by oil spills. The tolerances of the strains to different heavy metals were assessed by exposing them to different concentrations of cadmium, lead, and arsenic (0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM). Additionally, the genetic diversity of Methylobacterium spp. was determined by sequence analysis of the 16S rRNA genes. The isolates from the contaminated locations were grouped, suggesting that oil can select for microorganisms that tolerate oil components and can change the methylotrophic bacterial community. Cadmium is the most toxic heavy metal assessed in this work, followed by arsenic and lead, and two isolates of Methylobacterium were found to be tolerant to all three metals. These isolates have the potential to bioremediate mangrove environments contaminated by oil spills by immobilizing the heavy metals present in the oil

    RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease

    Get PDF
    publication-status: PublishedThe sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-β-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-β-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-β-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte

    Variabilidade genética e compatibilidade vegetativa de isolados de Erythricium salmonicolor

    Get PDF
    A rubelose é uma doença causada pelo fungo Erythricium salmonicolor que atinge muitos hospedeiros, como citros, café, seringueira, eucalipto, Acacia sp., infectando principalmente os galhos. Rubelose é um sério problema para o Brasil, reduzindo a produção de citros em valores próximos de 10%. A diversidade do fungo E. salmonicolor em cultivares brasileiras ainda não foi avaliada. Este trabalho teve como objetivos: i) avaliar a variabilidade genética, por meio de RAPD, de 19 isolados de E. salmonicolor provenientes de diferentes regiões citrícolas de São Paulo e Minas Gerais, ii) avaliar a compatibilidade vegetativa e fusão de hifas do fungo E. salmonicolor. Após a análise por RAPD, foram observados 6 grupos distintos, os quais não apresentaram correlação com o local de origem e espécie hospedeira. No teste de compatibilidade vegetativa, houve encontro de hifas em todos os cruzamentos e 84% destes apresentaram fusão entre elas. Foi verificada compatibilidade entre linhagens, embora não tenha sido observada correlação com os haplótipos. Os resultados observados neste trabalho indicam a importância de futuros estudos sobre a fase sexual do fungo E. salmonicolor, uma vez que a anastomose de hifas precede a formação de heterocário, onde ocorrem os processos de recombinação sexual e parassexual responsáveis pela variabilidade genética em fungos filamentosos.The Pink Disease is caused by Erythricium salmonicolor, which attacks broad hosts, such as citrus, coffee, rubber, Eucalyptus spp. and Acacia spp., infecting mainly branches. This disease became a serious problem in Brazil, reducing the citrus production up to 10%. However the genetic diversity and compatibility of the fungus E. salmonicolor from Brazilian citrus plants is not yet evaluated. Therefore, the aims of this study were to evaluate: i) the genetic variability of E. salmonicolor in the São Paulo and Minas Gerais States by the RAPD technique, and ii) the vegetative compatibility between these isolates. After RAPD analysis, six distinct groups were observed without correlation between the isolation site or host species. In the vegetative compatibility test, the contact of fungal hyphae between all evaluated crosses was observed, of which 84% presented hyphal fusion. Although the compatibility between strains was observed, no correlation between RAPD haplotypes and hyphal anastomosis was verified. These results show the importance of future studies on the sexual cycle of E. salmonicolor, since hyphal fusion, which precedes the formation of heterokaryons (sexual and parasexual reproduction) that could be responsible for the genetic variability in this species

    Guignardia citricarpa resistance to benzimidazoles

    Get PDF
    O objetivo deste trabalho foi avaliar a resistência de Guignardia citricarpa aos fungicidas carbendazim e piraclostrobina, por meio de avaliação do crescimento em meio de cultura, decomposição de tecido foliar e produção de corpos de frutificação. Para isso, o fungo G. citricarpa foi isolado de lesões de frutos de laranja (Citrus sinensis), produzidos em área com intensa aplicação de fungicida. Os isolados obtidos foram avaliados quanto à sensibilidade aos fungicidas piraclostrobina e carbendazim, nas dosagens de 0,5, 1 e 2 mg mL-1 de i.a., para se verificar o efeito da pressão de seleção causada pelo uso destes compostos em áreas citrícolas. Embora tenha sido observada redução efetiva no número de estruturas reprodutivas e na decomposição de folhas e frutos infectados com G. citricarpa, após a aplicação dos fungicidas, 7,5% dos isolados avaliados sobre meio de cultura apresentaram resistência a esse fungicida, o que indica que pode ocorrer seleção de isolados resistentes no campo. Para a piraclostrobina não foi observada resistência, o que indica que pode ser um composto alternativo para ser utilizado de forma alternada com carbendazim, para diminuir as chances de ocorrência de resistência do patógeno.The objective of this work was to evaluate the resistance of Guignardia citricarpa to pyraclostrobine and carbendazim fungicides, through: growth analysis in culture media amended with the fungicides; leaf decomposition; and production of reproductive structures on leaves naturally infected with these fungi. G. citricarpa was isolated from symptomatic fruits of sweet orange (Citrus sinensis) cultivated in area with intense fungicide application. The sensibility to fungicides of G. citricarpa isolates was evaluated with pyraclostrobine and carbendazim, in the doses 0.5, 1 e 2 mg mL-1 a.i., to verify the effect of selection pressure caused by continuous use of these compounds. Although, reduction on leaf decomposition and on the number of reproductive structures were observed after application of pyraclostrobine and carbendazim, 7.5% of the isolates, evaluated in culture media, exhibited resistance to carbendazim, suggesting that the use of this agrochemical must be combined to other active principles in a consortium to reduce the chances of resistance occurrence. No resistance to pyraclostrobine was observed among tested isolates, what indicates that this could be an alternative compound to be used in combination to carbendazim, to minimize the chance of resistance occurrence

    Analysis of 16S rRNA and mxaF genes reveling insights into Methylobacterium niche-specific plant association

    Get PDF
    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant
    corecore