110 research outputs found

    Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios

    Get PDF
    Biomass Energy with Carbon Capture and Storage (BECCS) is heavily relied upon in scenarios of future emissions that are consistent with limiting global mean temperature increase to 1.5 °C or 2 °C above pre-industrial. These temperature limits are defined in the Paris Agreement in order to reduce the risks and impacts of climate change. Here, we explore the use of BECCS technologies in a reference scenario and three low emission scenarios generated by an integrated assessment model (IMAGE). Using these scenarios we investigate the feasibility of key implicit and explicit assumptions about these BECCS technologies, including biomass resource, land use, CO2 storage capacity and carbon capture and storage (CCS) deployment rate. In these scenarios, we find that half of all global CO2 storage required by 2100 occurs in USA, Western Europe, China and India, which is compatible with current estimates of regional CO2 storage capacity. CCS deployment rates in the scenarios are very challenging compared to historical rates of fossil, renewable or nuclear technologies and are entirely dependent on stringent policy action to incentivise CCS. In the scenarios, half of the biomass resource is derived from agricultural and forestry residues and half from dedicated bioenergy crops grown on abandoned agricultural land and expansion into grasslands (i.e. land for forests and food production is protected). Poor governance of the sustainability of bioenergy crop production can significantly limit the amount of CO2 removed by BECCS, through soil carbon loss from direct and indirect land use change. Only one-third of the bioenergy crops are grown in regions associated with more developed governance frameworks. Overall, the scenarios in IMAGE are ambitious but consistent with current relevant literature with respect to assumed biomass resource, land use and CO2 storage capacity

    Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems

    Get PDF
    Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding ‘credit’ across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability

    Interaction of epitope-related and -unrelated peptides with anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment

    No full text
    The binding of four epitope-related peptides and three library-derived, epitope-unrelated peptides of different lengths (10-14 amino acids) and sequence by anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment was studied by isothermal titration calorimetry. The binding constants KA at 25°C vary between 5.1 × 107 M-1 for the strongest and 1.4 × 105 M-1 for the weakest binder. For each of the peptides complex formation is enthalpicaily driven and connected with unfavorable entropic contributions; however, the ratio of enthalpy and entropy contributions to ΔG0 differs markedly for the individual peptides. A plot of -ΔH0 vs -TΔS0 shows a linear correlation of the data for a wide variety of experimental conditions as expected for a process with ΔCp much larger than ΔS0. The dissimilarity of ΔCp and AS0 also explains why ΔH0 and TΔS0 show similar temperature dependences resulting in relatively small changes of ΔG0 with temperature. The heat capacity changes ΔCp upon antibody-peptide complex formation determined for three selected peptides vary only in a small range, indicating basic thermodynamic similarity despite different key residues interacting in the complexes. Furthermore, the comparison of van't Hoff and calorimetric enthaipies point to a non-two-state binding mechanism. Protonation effects were excluded by measurements in buffers of different ionization enthaipies. Differences in the solution conformation of the peptides as demonstrated by circular dichroic measurements do not explain different binding affinities of the peptides; specifically a high helix content in solution is not essential for high binding affinity despite the helical epitope conformation in the crystal structure of p24
    • …
    corecore