250 research outputs found

    Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA repair genes critically regulate the cellular response to chemotherapy and epigenetic regulation of these genes may be influenced by chemotherapy exposure. Restoration of BRCA1 and BRCA2 mediates resistance to platinum chemotherapy in recurrent BRCA1 and BRCA2 mutated hereditary ovarian carcinomas. We evaluated BRCA1, BRCA2, and MLH1 protein expression in 115 sporadic primary ovarian carcinomas, of which 31 had paired recurrent neoplasms collected after chemotherapy. Additionally, we assessed whether promoter methylation of BRCA1, MLH1 or FANCF influenced response to chemotherapy or explained alterations in protein expression after chemotherapy exposure.</p> <p>Results</p> <p>Of 115 primary sporadic ovarian carcinomas, 39 (34%) had low BRCA1 protein and 49 (42%) had low BRCA2 expression. BRCA1 and BRCA2 protein expression were highly concordant (p < 0.0001). MLH1 protein loss occurred in 28/115 (24%) primary neoplasms. BRCA1 protein loss in primary neoplasms was associated with better survival (p = 0.02 Log Rank test) and remained significant after accounting for either stage or age in a multivariate model (p = 0.04, Cox proportional hazards). In paired specimens, BRCA1 protein expression increased in 13/21 (62%) and BRCA2 protein expression increased in 15/21 (71%) of recurrent carcinomas with low or intermediate protein in the paired primary. In contrast MLH1 expression was rarely decreased in recurrent carcinomas (1/33, 3%). Similar frequencies of MLH1, BRCA1, and FANCF promoter methylation occurred in primary carcinomas without previous chemotherapy, after neoadjuvant chemotherapy, or in recurrent neoplasms.</p> <p>Conclusion</p> <p>Low BRCA1 expression in primary sporadic ovarian carcinoma is associated with prolonged survival. Recurrent ovarian carcinomas commonly have increased BRCA1 and/or BRCA2 protein expression post chemotherapy exposure which could mediate resistance to platinum based therapies. However, alterations in expression of these proteins after chemotherapy are not commonly mediated by promoter methylation, and other regulatory mechanisms are likely to contribute to these alterations.</p

    Allele-specific transcriptional elongation regulates monoallelic expression of the IGF2BP1 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Random monoallelic expression contributes to phenotypic variation of cells and organisms. However, the epigenetic mechanisms by which individual alleles are randomly selected for expression are not known. Taking cues from chromatin signatures at imprinted gene loci such as the insulin-like growth factor 2 gene 2 (<it>IGF2</it>), we evaluated the contribution of CTCF, a zinc finger protein required for parent-of-origin-specific expression of the <it>IGF2 </it>gene, as well as a role for allele-specific association with DNA methylation, histone modification and RNA polymerase II.</p> <p>Results</p> <p>Using array-based chromatin immunoprecipitation, we identified 293 genomic loci that are associated with both CTCF and histone H3 trimethylated at lysine 9 (H3K9me3). A comparison of their genomic positions with those of previously published monoallelically expressed genes revealed no significant overlap between allele-specifically expressed genes and colocalized CTCF/H3K9me3. To analyze the contributions of CTCF and H3K9me3 to gene regulation in more detail, we focused on the monoallelically expressed <it>IGF2BP1 </it>gene. <it>In vitro </it>binding assays using the CTCF target motif at the <it>IGF2BP1 </it>gene, as well as allele-specific analysis of cytosine methylation and CTCF binding, revealed that CTCF does not regulate mono- or biallelic <it>IGF2BP1 </it>expression. Surprisingly, we found that RNA polymerase II is detected on both the maternal and paternal alleles in B lymphoblasts that express <it>IGF2BP1 </it>primarily from one allele. Thus, allele-specific control of RNA polymerase II elongation regulates the allelic bias of <it>IGF2BP1 </it>gene expression.</p> <p>Conclusions</p> <p>Colocalization of CTCF and H3K9me3 does not represent a reliable chromatin signature indicative of monoallelic expression. Moreover, association of individual alleles with both active (H3K4me3) and silent (H3K27me3) chromatin modifications (allelic bivalent chromatin) or with RNA polymerase II also fails to identify monoallelically expressed gene loci. The selection of individual alleles for expression occurs in part during transcription elongation.</p

    Altered RECQ Helicase Expression in Sporadic Primary Colorectal Cancers

    Get PDF
    AbstractDeregulation of DNA repair enzymes occurs in cancers and may create a susceptibility to chemotherapy. Expression levels of DNA repair enzymes have been shown to predict the responsiveness of cancers to certain chemotherapeutic agents. The RECQ helicases repair damaged DNA including damage caused by topoisomerase I inhibitors, such as irinotecan. Altered expression levels of these enzymes in colorectal cancer (CRC) may influence the response of the cancers to irinotecan. Thus, we assessed RECQ helicase (WRN, BLM, RECQL, RECQL4, and RECQL5) expression in primary CRCs, matched normal colon, and CRC cell lines. We found that BLM and RECQL4 mRNA levels are significantly increased in CRC (P = .0011 and P < .0001, respectively), whereas RECQL and RECQL5 are significantly decreased (P = .0103 and P = .0029, respectively). RECQ helicase expression patterns varied between specific molecular subtypes of CRCs. The mRNA and protein expression of the majority of the RECQ helicases was closely correlated, suggesting that altered mRNA expression is the predominant mechanism for deregulated RECQ helicase expression. Immunohistochemistry localized the RECQ helicases to the nucleus. RECQ helicase expression is altered in CRC, suggesting that RECQ helicase expression has potential to identify CRCs that are susceptible to specific chemotherapeutic agents

    SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy

    Get PDF
    BRCA1, a tumor suppressor gene, is implicated in the repression and activation of transcription via interactions with a diverse range of proteins. The mechanisms regulating the action of BRCA1 are not fully understood. Here, we use the promoters of Gadd45α, p27KIP1 and p21WAF1/CIP1 to demonstrate that SUMO1 represses transactivation potential of BRCA1 by causing BRCA1 to be released from the promoters and augmenting histone deacetylation via recruitment of histone deacetylase (HDAC) activity. Consistently, silencing of SUMO1 led to recruitment of BRCA1 and release of HDAC1 at the BRCA1 target promoters, and subsequent transcriptional activation of the BRCA1 target genes. Furthermore, a sumoylation-incompetent mutant missing the sumoylation donor site suppressed BRCA1-induced activation of transcription, whereas E2 UBC9 or the dominant-negative mutant UBC9 had no effect, implying that repression of BRCA1-mediated activation of transcription by SUMO1 is independent of sumoylation. Repression of BRCA1-mediated activation of transcription by SUMO1 was reversed by DNA damage by inducing the release of SUMO1 from the Gadd45α promoter and the recruitment of BRCA1, along with increased histone acetylation, to enhance activation of transcription. Together, our data provide evidence that SUMO1 plays a role in the activation-repression switch of BRCA1-mediated transcription via modulation of promoter occupancy

    The contribution of inherited genotype to breast cancer

    Get PDF
    The etiology of breast cancer is complex, and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. These inherited genotypes include those that affect the propensity to be exposed to breast carcinogens, and those associated with breast tumorigenesis directly. In addition, inherited genotypes may influence response to breast cancer chemoprevention and treatment. Studies relating inherited genotypes with breast cancer incidence and mortality should consider a broader spectrum of genes and their potential roles in multistage carcinogenesis than have been typically evaluated to date. Understanding the role of inherited genotype at different stages of carcinogenesis could improve our understanding of cancer biology, may identify specific exposures or events that correlate with carcinogenesis, or target relevant biochemical pathways for the development of preventive or therapeutic interventions

    DBC2, a candidate for a tumor suppressor gene involved in breast cancer

    Get PDF
    A previously uncharacterized gene, DBC2 (deleted in breast cancer), was cloned from a homozygously deleted region at human chromosome 8p21. DBC2 contains a highly conserved RAS domain and two putative protein interacting domains. Our analyses indicate that DBC2 is the best candidate tumor suppressor gene from this region. It lies within the epicenter of the deletions and is homozygously deleted in 3.5% (7/200) of breast tumors. Mutation analysis of DBC2 led to discovery of two instances of somatic missense mutations in breast tumor specimens, whereas no missense mutations were found in other candidates from the region. Unlike other genes in the region, expression of DBC2 is often extinguished in breast cancer cells or tissues. Moreover, our functional analysis revealed that DBC2 expression in breast cancer cells lacking DBC2 transcripts causes growth inhibition. By contrast, expression of a somatic mutant discovered in a breast cancer specimen does not suppress the growth of breast cancer cells

    The Icelandic founder mutation BRCA2 999del5: analysis of expression

    Get PDF
    INTRODUCTION: A founder mutation in the BRCA2 gene (BRCA2 999del5) accounts for 7–8% of female breast cancers and for 40% of male breast cancers in Iceland. If expressed, the mutant gene would encode a protein consisting of the first 256 amino acids of the BRCA2 protein. The purpose of this study was to determine whether this mutant protein is produced in heterozygous individuals and, if so, what might be the functional consequences of mutant protein production. METHODS: The presence of BRCA2 999del5 transcripts in fibroblasts from heterozygous individuals was assayed by cDNA synthesis and sequencing. The potential protein-coding portion of BRCA2 999del5 was cloned into the pIND(SP1)/V5-His vector and expressed in COS7 cells. The presence of the mutant protein in cell lysates from heterozygous fibroblasts and from COS7 cells was tested by a number of methods including immunoprecipitation, affinity purification with nickel-coated agarose beads, Western blotting and ELISA, using antibodies to the N-terminal end of BRCA2, antiserum specific for the 16 nonrelevant amino acids at the carboxyl end and antibodies to fusion partners of recombinant proteins. RESULTS: The frequency of the BRCA2 999del5 transcript in heterozygous fibroblasts was about one-fifth of the wild-type transcript; however, no mutant protein could be detected. Overexpression of BRCA2 999del5 mRNA in COS7 cells failed to produce a mutant protein unless degradation by proteasomes was blocked. CONCLUSION: Our results show that the protein product of BRCA2 999del5 is extremely unstable. Therefore, an increase in breast cancer risk in BRCA2 999del5 carriers is due to haploinsufficiency at the BRCA2 locus

    Intronic elements in the Na+/I- symporter gene (NIS) interact with retinoic acid receptors and mediate initiation of transcription

    Get PDF
    Activity of the sodium/iodide symporter (NIS) in lactating breast is essential for iodide (I–) accumulation in milk. Significant NIS upregulation was also reported in breast cancer, indicating a potential use of radioiodide treatment. All-trans-retinoic acid (tRA) is a potent ligand that enhances NIS expression in a subset of breast cancer cell lines and in experimental breast cancer models. Indirect tRA stimulation of NIS in breast cancer cells is very well documented; however, direct upregulation by tRA-activated nuclear receptors has not been identified yet. Aiming to uncover cis-acting elements directly regulating NIS expression, we screened evolutionary-conserved non-coding genomic sequences for responsiveness to tRA in MCF-7. Here, we report that a potent enhancer in the first intron of NIS mediates direct regulation by tRA-stimulated nuclear receptors. In vitro as well as in vivo DNA–protein interaction assays revealed direct association between retinoic acid receptor-α (RARα) and retinoid-X-receptor (RXR) with this enhancer. Moreover, using chromatin immunoprecipitation (ChIP) we uncovered early events of NIS transcription in response to tRA, which require the interaction of several novel intronic tRA responsive elements. These findings indicate a complex interplay between nuclear receptors, RNA Pol-II and multiple intronic RAREs in NIS gene, and they establish a novel mechanistic model for tRA-induced gene transcription

    Distinct functions of BRCA1 and BRCA2 in double-strand break repair

    Get PDF
    Individuals carrying BRCA mutations are predisposed to breast cancer. The BRCA1 and BRCA2 proteins are required for homologous recombination and DNA break repair, leading to the suggestion that they act in concert. However, direct evidence of a stable BRCA1/BRCA2 complex has not been demonstrated. Rather, the two proteins have been found as constituents of discrete, but perhaps nonexclusive complexes that are critical for repair. We discuss the interaction of BRCA1 with the BACH1 and BARD1 proteins, and suggest that the pleiotropic nature of mutations in BRCA1 may be associated with defects in protein–protein interactions. In contrast, the role of BRCA2 in DNA repair may be more defined by its direct interaction with the RAD51 recombinase

    A mitotic function for the high-mobility group protein HMG20b regulated by its interaction with the BRC repeats of the BRCA2 tumor suppressor.

    Get PDF
    The inactivation of BRCA2, a suppressor of breast, ovarian and other epithelial cancers, triggers instability in chromosome structure and number, which are thought to arise from defects in DNA recombination and mitotic cell division, respectively. Human BRCA2 controls DNA recombination via eight BRC repeats, evolutionarily conserved motifs of ∼35 residues, that interact directly with the recombinase RAD51. How BRCA2 controls mitotic cell division is debated. Several studies by different groups report that BRCA2 deficiency affects cytokinesis. Moreover, its interaction with HMG20b, a protein of uncertain function containing a promiscuous DNA-binding domain and kinesin-like coiled coils, has been implicated in the G2-M transition. We show here that HMG20b depletion by RNA interference disturbs the completion of cell division, suggesting a novel function for HMG20b. In vitro, HMG20b binds directly to the BRC repeats of BRCA2, and exhibits the highest affinity for BRC5, a motif that binds poorly to RAD51. Conversely, the BRC4 repeat binds strongly to RAD51, but not to HMG20b. In vivo, BRC5 overexpression inhibits the BRCA2-HMG20b interaction, recapitulating defects in the completion of cell division provoked by HMG20b depletion. In contrast, BRC4 inhibits the BRCA2-RAD51 interaction and the assembly of RAD51 at sites of DNA damage, but not the completion of cell division. Our findings suggest that a novel function for HMG20b in cytokinesis is regulated by its interaction with the BRC repeats of BRCA2, and separate this unexpected function for the BRC repeats from their known activity in DNA recombination. We propose that divergent tumor-suppressive pathways regulating chromosome segregation as well as chromosome structure may be governed by the conserved BRC motifs in BRCA2
    corecore