6,286 research outputs found

    Light scattering study of the “pseudo-layer” compression elastic constant in a twist-bend nematic liquid crystal

    Get PDF
    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or “pseudo-layers”, each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining “layer” compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant Keff1. The magnitude of Keff1 is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∌10⁶ Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the “pseudo-layer” structure of the TB phase with Beff in the range 10³–10⁎ Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director

    Hall-Effect for Neutral Atoms

    Full text link
    It is shown that polarizable neutral systems can drift in crossed magnetic and electric fileds. The drift velocity is perpendicular to both fields, but contrary to the drif t velocity of a charged particle, it exists only, if fields vary in space or in time. We develop an adiabatic theory of this phenomenon and analyze conditions of its experimental observation. The most proper objects for the observation of this effect are Rydberg atoms. It can be applied for the separation of excited atoms.Comment: RevTex, 4 pages; to be published in Pis'ma v ZhET

    Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor

    Get PDF
    We have experimentally demonstrated the enhancement of coherent Raman scattering in Rb atomic vapor by exciting atomic coherence with fractional stimulated Raman adiabatic passage. Experimental results are in good agreement with numerical simulations. The results support the possibility of increasing the sensitivity of CARS by preparing atomic or molecular coherence using short pulses

    Effect of Magnetization Inhomogeneity on Magnetic Microtraps for Atoms

    Get PDF
    We report on the origin of fragmentation of ultracold atoms observed on a permanent magnetic film atom chip. A novel technique is used to characterize small spatial variations of the magnetic field near the film surface using radio frequency spectroscopy of the trapped atoms. Direct observations indicate the fragmentation is due to a corrugation of the magnetic potential caused by long range inhomogeneity in the film magnetization. A model which takes into account two-dimensional variations of the film magnetization is consistent with the observations.Comment: 4 pages, 4 figure

    Assessment of health equity consideration in masking/PPE policies to contain COVID-19 using PROGRESS-plus framework: a systematic review

    Get PDF
    INTRODUCTION: There is increasing evidence that COVID-19 has unmasked the true magnitude of health inequity worldwide. Policies and guidance for containing the infection and reducing the COVID-19 related deaths have proven to be effective, however the extent to which health inequity factors were considered in these policies is rather unknown. The aim of this study is to measure the extent to which COVID-19 related policies reflect equity considerations by focusing on the global policy landscape around wearing masks and personal protection equipment (PPE). METHODS: A systematic search for published documents on COVID-19 and masks/PPE was conducted across six databases: PubMed, EMBASE, CINAHL, ERIC, ASSIA and Psycinfo. Reviews, policy documents, briefs related to COVID-19 and masks/PPE were included in the review. To assess the extent of incorporation of equity in the policy documents, a guidance framework known as ‘PROGRESS-Plus’: Place of residence, Race/ethnicity, Occupation, Gender/sex, Religion, Education, Socioeconomic status, Social capital, Plus (age, disability etc.) was utilized. RESULTS: This review included 212 policy documents. Out of 212 policy documents, 190 policy documents (89.62%) included at least one PROGRESS-plus component. Most of the policy documents (n = 163, 85.79%) focused on “occupation” component of the PROGRESS-plus followed by personal characteristics associated with discrimination (n = 4;2.11%), place of residence (n = 2;1.05%) and education (n = 1;0.53%). Subgroup analysis revealed that most of the policy documents (n = 176, 83.01%) were focused on “workers” such as healthcare workers, mortuary workers, school workers, transportation workers, essential workers etc. Of the remaining policy documents, most were targeted towards whole population (n = 30; 14.15%). Contrary to “worker focused” policy documents, most of the ‘whole population focused’ policy documents didn’t have a PROGRESS-plus equity component rendering them equity limiting for the society. CONCLUSION: Our review highlights even if policies considered health inequity during the design/implementation, this consideration was often one dimensional in nature. In addition, population wide policies should be carefully designed and implemented after identifying relevant equity related barriers in order to produce better outcomes for the whole society

    Spectral Narrowing via Quantum Coherence

    Get PDF
    We have studied the transmission of an optically thick Rb vapor that is illuminated by monochromatic and noise broaden laser fields in Lambda configuration. The spectral width of the beat signal between the two fields after transmission through the atomic medium is more than 1000 times narrower than the spectral width of this signal before the medium.Comment: 4 pages, 4 figure

    Radiative impact of aerosols generated from biomass burning

    Get PDF
    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m

    Regional Comparisons of Satellite (AVHRR) and Space Shuttle (MAPS) Derived Estimates of CO and Aerosol Concentrations

    Get PDF
    Biomass burning is considered to be a major source of trace gas species and aerosol particles which play a vital role in tropospheric chemistry and climate. Anthropogenic biomass burning has largely expanded in the last 15 years, due to increased deforestation practices in the Amazon Basin, as well as to clear land for shifting cultivation in South America, southern Asia, and Africa. Biomass burning produces large amounts of carbon dioxide, carbon monoxide (CO), water, hydrocarbons, nitrous oxides, and smoke particles

    Second harmonic light scattering induced by defects in the twist-bend nematic phase of liquid crystal dimers

    Get PDF
    The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orientationally ordered mesophase -- the first distinct nematic variant discovered in many years. The NTB phase is distinguished by a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heliconical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensitive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural defects. These defects are parabolic focal conics of smectic-like ``pseudo-layers", defined by planes of equivalent phase in a coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two
    • 

    corecore