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The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orien-
tationally ordered mesophase – the first distinct nematic variant discovered in many years. The NTB phase is distinguished by
a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems
of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another
fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heli-
conical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that
rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental
detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensi-
tive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural
defects. These defects are parabolic focal conics of smectic-like “pseudo-layers”, defined by planes of equivalent phase in a
coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines
a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two.

1 Introduction

Polar orientational order in liquid crystals (LCs) is tradition-
ally associated with the hindered rotation of chiral molecules
arranged in layers (smectic phase). In conventional ferroelec-
tric LCs, this hindrance is caused by tilt of molecules with
respect to the layer normal (smectic-C phase), which leads
to broken inversion symmetry and a spontaneous polariza-
tion parallel to the layers. The development and exploration
in the past 20 years of mesogens with a bent-shaped (rather
than rod-like) rigid core structure has seen the requirement
of molecular chirality eliminated: In these systems of achi-
ral molecules, both smectic-C and smectic-A (untilted) phases
exhibit in-layer polarization and, perhaps more interestingly,
in the smectic-C case spontaneously separate into domains of
opposite structural chirality. Layer tilt plus layer polarization
therefore induce chirality.

So far, however, the realization of polar orientational order
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without layering or constituent chirality has proven elusive.
While simple nematics exhibit a typically weak polarization
under an applied orientational stress (the so-called flexoelec-
tric effect1), in equilibrium the magnitude of the vector order
parameter representing the dipole moment of the molecules
vanishes. The recent discovery of the twist-bend nematic
(NTB) phase2–4, originally predicted by Meyer5, may have
fundamentally altered this situation.

The NTB phase typically occurs at temperatures below
the ordinary uniaxial nematic phase, in achiral liquid crystal
dimers composed of a pair of rodlike mesogenic units con-
nected by an odd-numbered hydrocarbon linkage. This link-
age favors an overall bent conformation (Fig. 1(a)). As shown
in Fig. 1(b), the NTB state is characterized by a modulated ori-
entational structure in which the average molecular long axis
(local director n̂) simultaneously bends and twists in space
in a periodic fashion, producing a heliconical configuration.
The typical cone angle (average tilt of the molecules away
from the helical axis, inferred from optical birefringence mea-
surements)3,6, is β ∼ 10◦. The pitch (t0) of the modulation,
measured directly by freeze-fracture TEM4, is surprisingly
short – of order a few molecular lengths (i.e., t0 ∼ 10 nm).
Both parameters differ markedly from the usual chiral nematic
(cholesteric), where β = 90◦ and t0 & 100 nm.
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Various theoretical models7–15 have been proposed to ac-
count for the properties of the NTB phase and the nature of the
nematic-NTB transition. Dozov7 and Meyer et al8 developed
a model based on the Frank elasticity for bend distortions of
n̂ becoming negative at the transition; in this thoery, the or-
der parameter for the NTB state is sin2

β . Two other models –
those of Kats and Lebedev10 and Shamid et al9 – introduce a
vector order parameter and expand the Landau-deGennes free
energy density in terms of this order parameter and n̂. In par-
ticular, Shamid et al9 propose that the order parameter is a
helical polarization wave, P, which is orthogonal to, but has
the same nanoscale pitch as, the heliconical director n̂. (P
may represent a shape polarization in lieu of, or in addition to,
an electric polarization.) A linear coupling of P to the curl of
n̂ drives the heliconical modulation of n̂, and, on the nematic
side of the transition, renormalizes the bend elastic constant
to zero, destabilizing the nematic phase in agreement with the
theory of Dozov7 and with experiment16. While studies of
fluctuations in the NTB phase are consistent with the presence
of a short-pitch polarization wave17, more direct confirmation,
by a method sensitive to broken centrosymmetry due to P, is
clearly desirable. Given the absence of any mass density wave
(Bragg peaks) in X-ray diffraction measurements4,18,19, con-
firmation of P would establish the NTB state as the first exam-
ple of a locally polar LC phase without smectic-like molecular
layering – a prospect of fundamental significance.

This paper presents the results of a second harmonic light
scattering (SHLS) study designed to test this prospect. In or-
der to detect at optical wavelengths a polarization field that av-
erages out over a nanoscale helical pitch, our approach takes
advantage of another interesting feature of the NTB phase –
the presence of topological defects, analogous to the classi-
cal parabolic focal conic (PFC) defects in the layer structure
of simple smectic LCs, that distort the polarization field over a
length scale much larger than t0 and thereby produce a nonzero
P on the optical scale suited to the SHLS technique20.

Specifically, we demonstrate an SHLS signal in the NTB
phase, whose key features (optical polarization selection rules,
in particular) are explained by a model in which slabs of the
NTB system, defined by planes of constant helical phase, are
treated as “pseudo-layers”. When their spacing is reduced due
to a temperature dependent helical pitch, these “layers” ex-
hibit PFC defects in an a analogous manner as true smectics do
when placed under a dilatory strain. The concept of “pseudo-
layers” was previously introduced in the development of a
“coarse-grain” theory of cholesterics21–23.

This concept has recently been applied to the NTB phase
to describe smectic-like elastic properties6,17 and fluctuation
modes17, strong shear thinning behavior24, and optical stripe
and focal conic textures25. Starting from a theoretically pro-
posed free energy density coupling n̂ and P9, we show that
“pseudo-layer” deformations associated with PFCs naturally

Fig. 1 (a): Structure of LC dimers that form the NTB phase in the
mixture KA(0.2) and the single compound DTC5C7. (b): Schematic
rendering of the heliconical molecular orientation in the NTB phase,
with cone angle β and helical wavenumber q0. Each cylinder
represents the average molecular long axis of a dimer, and the
vectors n̂ and P correspond to the local director and polarization
fields, respectively, while t̂ is the average or “coarse-grained”
director. (c): 3D CAD rendering of the experimental apparatus.

lead to a distortion of the helical field P that breaks centrosym-
metry at length scales comparable to (or greater than) optical
wavelengths. We also verify that the SHLS signal is absent
in an ordinary calamitic smectic liquid crystal containing a
comparable density of PFCs, but lacking any underlying polar
structure. Our results and analysis thus provide strong evi-
dence of an underlying helical polarization field that charac-
terizes the NTB phase.

2 Experimental Details

The NTB materials studied are: (1) a mixture [denoted
KA(0.2)]16 of five odd-membered dimers with ether link-
ages between mesogenic groups plus one dimer with a
methylene linkage, CBF9CBF (Fig. 1(a)), which is con-
sidered to be the active component in inducing the NTB
phase; and (2) a pure dimer18,26 (labeled DTC5C7 and
also shown in Fig. 1(a)). The phase sequences of these
materials (in cooling) are isotropic-(77◦)-N-(37.4◦)-NTB-
(22◦C)-crystal [KA(0.2)] and isotropic-(156.8◦)-N-(127.8◦)-
NTB-(96.6◦)-SmX-(77.4◦C)-crystal (DTC5C7). As a control
compound, we chose the conventional, rodlike thermotropic,
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4-n-octyl-4’-cyanobiphenyl (8CB).
The liquid crystals were either capillary filled into sand-

wich cells made of fused silica (FS) substrates with a 0.1 mm
spacer or loaded into FS cuvettes with a 1 mm path length.
In both cases the substrate surfaces were thoroughly cleaned
but otherwise untreated. The loaded cells were placed in a
temperature-regulated oven with optical access on opposite
sides and with ∼ 0.01 K stability. The oven fitted between
the pole faces of a laboratory electromagnet, with the direc-
tion of the field oriented perpendicular to the substrate normal
(Fig. 1(c)). The director n̂ in the nematic phase or direction
t̂, corresponding to the average of n̂ over the heliconical pitch
in the NTB phase (see Fig. 1(b)), was magnetically aligned by
slowly cooling from the isotropic phase in a 1.13 T field pro-
duced by the magnet.

The samples were illuminated at normal incidence to the
substrates and to the direction of t̂ with polarized 1064 nm
light from a Nd:YAG laser (Continuum Minilite II, outputting
5-7 ns, ∼ 2 mJ pulses at 10 Hz). The beam diameter at the
sample was reduced to 1 mm by a fixed aperture. At the inci-
dent pulse energy used, no evidence of damage to the samples
was detected during or after the measurements. The incident
polarization could be rotated between vertical (V , perpendic-
ular to t̂) and horizontal (H, parallel to t̂) orientations. The
directions V , H also refer to vertical and horizontal with re-
spect to the plane of the apparatus in Fig. 1(c).

The scattered second harmonic (SH) light from the samples
was collected in a cone of 15◦ opening angle around the for-
ward (transmitted light) direction by a specially constructed
optical telescope, which imaged the scattering pattern onto the
sensor of a cooled CCD camera (Princeton Instruments, model
ProEM512). An analyzer was used to set the V and H polar-
ization state of the SH light, while a series of broad and nar-
row band filters (the latter having a passband of 1 nm FWHM
at 532 nm) removed the transmitted fundamental light.

The telescope could be interchanged with a polarizing opti-
cal microscope for in-situ examination of the sample textures
over the region illuminated by the laser beam and for con-
firmation of uniform director alignment. SH scattering pat-
terns and optical micrographs were recorded for various po-
larizer/analyzer combinations at fixed temperatures in the NTB
phase of the samples.

3 Results

3.1 Microscopy

First we consider the results from polarizing microscopy dis-
played in Fig. 2; the images shown were obtained after cooling
the samples in the applied magnetic field to temperatures be-
low the transition temperature (TT B) to the NTB phase. In the
images, the polarizer and analyzer axes are approximately par-

Fig. 2 Polarizing microscope images of parabolic focal conic defect
arrays in the NTB phase of the studied LC compounds (polarizer
along horizontal direction, analyzer at 10◦ angle from horizontal).
(a) and (b): Images taken in the mid-plane of a 0.1 mm thick sample
of DTC5C7 at temperatures 7.8◦C and 13.8◦C below the unixial
nematic to NTB transition. (These temperatures correspond to two of
the data sets for DTC5C7 in Fig. 3.) (c): Image taken near the
surface of a 1 mm cell of KA(0.2), 0.9◦C below the transition.
There are no observable PFCs and no SH signal (see Fig. 3). (d): At
∼ 2◦C below the transition, PFCs appear and an SH signal is
observed. All of the images were recorded after cooling through the
transition in a 1.13 T magnetic field (horizontal in the figure).

allel to the field. The effective director t̂ is uniformly oriented
along the field, except in the immediate vicinity of parabolic
focal conic (PFC) defects. These are delineated in Fig. 2 by
dark lines tracing out parabolic trajectories, which are paired
together in orthogonal planes such that each parabola in a pair
passes through the other’s focus. The paired parabolae resem-
ble the classic PFC texture observed in ordinary smectic LCs
under a dilatory strain of the smectic layers27.

In the images of Fig. 2, typically one parabola lies in the fo-
cal plane (parallel to the cell substrates), while the second of
the pair occupies a plane normal to the viewing direction. The
spacing between the two opposite “arms” within each PFC is
∼ 50µm, while the separation between foci in the core re-
gion is about 6 µm. The symmetry axes of the PFCs are
well-aligned, and parallel to the NTB optical axis (t̂) direc-
tion. In the thicker (1 mm) cells, the core regions of the PFCs
could be resolved in two distinct planes close to the oppos-
ing cell boundaries, whereas in the 0.1 mm cells a single fo-
cal plane was located at essentially the mid-plane of the cell.
Thus, two layers of PFCs form near the opposing substrates
in sufficiently thick samples, but are squeezed into a single
layer when the cell thickness becomes comparable to the di-
mensions of the parabolae.
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Fig. 3 Angular distribution of SH light recorded in the NTB phase of KA(0.2) and DTC5C7. The thumbnail images (insets) show the raw data
from the CCD detector, color coded for intensity (light blue representing the background level, dark red representing peak level). The axis of
the applied magnetic field (and average LC director) is horizontal in the thumbnails. The main figures display plots SH power vs scattering
angle for a horizontal cut (40 pixels wide) through the central peak. The polarizer and analyzer combinations for the normally incident
fundamental light (wavevector kω ) and the second harmonic light collected from the sample are indicated in each panel; H (horizontal)
corresponds to polarization parallel to the average LC director t̂ and also to the axis through the foci of the parabolae delineating the PFC
defects in Fig. 2, while V (vertical) applies to the direction perpendicular to t̂ and to kω . First two columns (from left): Data for KA(0.2) in
thick (1 mm) and thin (0.1 mm) optical cells: Note the approximately twofold decrease in signal, despite a tenfold decrease in sample
thickness. Data, taken in cooling, are shown for several temperatures relative to the nematic to NTB transition: −0.9◦C (gray), −3.4◦C (blue),
−5.4◦C (green), and −7.4◦C (red points). For the temperatures close to the transition, no PFCs are observed (Fig. 2), and there is no SH
signal. Note that the central peak is split when the incident (fundamental light) polarization is switched from H to V (for V SH output), but
there is no H output for either H or V input polarization (bottom panels). Third column: Similar results for a thin cell containing DTC5C7, at
temperatures −3.8◦C (gray), −7.8◦C (blue), −9.8◦C (green), and −13.8◦C (red) relative to the nematic to NTB transition. Again there is no
H polarized SH output.
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Fig. 4 Integrated SH intensity (normalized after background
subtraction) as a function of analyzer angle φ for fixed polarizer
settings Hω and Vω . The data were recorded on the 1 mm sample of
KA(0.2) at a temperature 5.4◦C below the N to NTB transition. The
solid line is the curve sin2

φ (see discussion in the text).

As Fig. 2(c) reveals, the PFCs are absent at temperatures
close to (within ∼ 1◦ of TT B); they appear and their popu-
lation increases in the range TT B − T ' 1 to 3◦C, and then
saturates. By analogy with ordinary smectics, we interpret
the PFCs as defects in a “pseudo-layer” structure defined by
∼ 10 nm thick slabs between planes of constant phase in the
heliconical NTB structure. As the temperature decreases be-
low TT B, the “layer” spacing (pitch t0) shrinks, resulting in
PFC formation at a threshold t0 just as a critical dilatory strain
does in the case of true smectic layers.

3.2 Second harmonic light scattering

We now turn to our results from SHLS measurements in the
NTB phase. These are summarized in Fig. 3. First consider
the case where the incident (fundamental) light is polarized
along t̂ and the SH output is polarized perpendicular to t̂ (an
Hω → V2ω process, following the nomenclature introduced
above). In both NTB materials, for T below but within 1◦C
of the transition (TT B) – the range where PFCs are absent –
no SH output is detected. The SH signal is clearly associated
with the appearance of PFCs in the NTB phase.

Below this range and in the presence of PFCs, a clear SH
signal is observed, with a peak in the forward direction. In
the KA(0.2) samples, the signal level increases slightly with
decreasing T in both thick and thin samples, whereas the sig-
nal approximately doubles for DTC5C7. The angular FWHM
of the Hω → V2ω peak (using data from the thin cells) corre-

sponds to a length scale of 1.22λ2ω/FWHM ∼ 7 µm, which
is comparable to the spacing between foci of the PFCs. The
FWHM of the SH peak differs significantly between the thin
and thick KA(0.2) samples. We suspect that the broadening
in the thick cell is mainly due to multiple scattering of the ω

and/or 2ω light, since even after magnetic alignment, visual
inspection revealed this sample to be noticeably more turbid
than the thinner sample.

For V polarized input and V output (Vω →V2ω process), the
angular distribution of SH light is again concentrated around
the forward direction. However, the peak is split approxi-
mately symmetrically about zero scattering angle (compare
the thumbnail images in Fig. 3 showing the raw SHLS patterns
recorded on the CCD). Also, the temperature dependence is
weaker than for the Hω → V2ω process. On the other hand,
for H polarized output (Hω →H2ω and Vω →H2ω processes),
there is no SH signal. Thus, all detected SH output is polarized
perpendicular to the average helical axis of the TB structure
or, equivalently, to the axis of the PFC defects.

More detail on this point is provided in Fig. 4, which
shows the variation of the normalized, integrated SH inten-
sity as a function of analyzer angle φ for fixed polarizer set-
tings of Hω or Vω , measured on the 1 mm KA(0.2) sample
at T −TT B = −5.4◦C. Here φ = 0◦ (90◦) corresponds to H2ω

(V2ω ) SH output. In terms of the second order susceptibil-
ity χ(2) for the SH-active regions of the medium, we expect
I(2)(Hω ;φ) ∝ (χV HH sinφ + χHHH cosφ)2 and I(2)(Vω ;φ) ∝

(χVVV sinφ + χHVV cosφ)2. The solid line in Fig. 4 is a
plot of sin2

φ , which clearly matches the data and implies
χHHH = χHVV = 0.

The peak SH intensity from the 0.1 mm thick samples of
KA(0.2) is approximately two times lower than in the 1 mm
sample. For incoherent SH generation from the bulk NTB
phase, we would normally expect a factor ∼ 10 decrease. The
discrepancy is explained by the SHG originating from the PFC
defects: As noted above, there are two “layers” of PFCs, local-
ized near the surfaces, in the thick cell, but only one in the thin
cell – hence the factor of∼ 2 change observed in SH intensity.

In all cases, the SH signal is quite weak – of order ∼ 10−7

the level from a 0.5 mm thick Z-cut single crystal quartz ref-
erence. Several factors, beyond the possibility of an intrin-
sically small nonlinear susceptibility, may contribute to this
weak level. First, the scattering is incoherent, and there is
no phase matching between the fundamental and second har-
monic waves. Second, the signal comes only from the PFCs,
and the region of strong “pseudo-layer” deformation (defined
by the parabolic lines in the images in Fig. 2) occupies only
a small fraction of the total volume illuminated by the fun-
damental laser beam. Third, as we shall describe later in the
Discussion section, cancellations in the induced polarization
(and effective non-centrosymmetry) occur both at points on
the parabolae and between points on opposite sides of them,
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Fig. 5 Results for 1 and 0.1 mm thick cells of the control sample of
8CB in the smectic-A phase. No SH output is observed despite the
presence of PFCs in the smectic layer structure (see accompanying
microscope images).

reducing the SH output.
To confirm that the SH signal arises specifically from defor-

mation of NTB “pseudo-layers”, we performed similar mea-
surements on the smectic-A phase of an ordinary rod-like
LC, octyl cyanobiphenyl (8CB), which also exhibits classi-
cal PFCs. As shown in Fig. 5, for both 1 mm and 0.1 mm
cells populated with PFC defects of an ordinary smectic layer
structure, there is no detectable SH signal under experimental
conditions identical to those used for the NTB samples.

4 Discussion

Let us now consider mechanisms for second harmonic gen-
eration due to the presence of PFCs, which could potentially
account for the experimental results described in the previous
section. Before beginning, it may be useful to summarize the
following key points of the analysis developed in the subsec-
tions below:

(1) Deformation of the NTB “pseudo-layers” and the average
director, due to PFCs, distorts the helical polarization field
associated with NTB order, and gives rise to a net polariza-
tion P that lies principally in the plane perpendicular to the
PFC axis.

(2) In a coarse-grained picture, the process is analogous to the
electroclinic effect in a chiral smectic-A phase: Tilting of
the average director (helical axis) away from the “pseudo-
layer” normal induces a P orthogonal to the tilt plane (with

the direction in this plane depending on the sign of the
helicity).

(3) The locally broken centrosymmetry, together with the
electroclinic analogy, determine the structure of the
second-order nonlinear susceptibility tensor χ(2).

(4) The mirror symmetry of the “pseudo-layer” displacement
through planes containing the PFC axis and a pair of
parabolic “arms” leads to cancellations of P between op-
posing “arms”. While this complicates development of a
quantitative relation between the local magnitude of P and
the observed SH signal, it still allows an explanation of the
main qualitative features (e.g., polarization selection rules
and angular distribution) of the SH signal.

4.1 Theoretical model for induced polarization

Fig. 6(a) shows a three-dimensional rendering of deformed
layers in the core region of a PFC, which is based upon the
geometrical construction given in Ref.27. Although this con-
struction strictly applies in the limit of incompressible layers
(i.e., infinite elastic constant for layer compression), it pro-
vides a useful starting point.

In a normal smectic-A, curvature of the layers implies a
splay of the director field, and thus in principle a flexoelec-
tric polarization normal to the layers and in the direction of
n̂(∇ · n̂)1. However, as already pointed out, no SHG from
such a mechanism was observed due to PFCs in the smectic-
A phase of the control sample 8CB. For the layer distortion
in a PFC defect, the maximum curvature occurs at the coni-
cal “cusps”, where the layers “pinch” down to points located
along the parabolae (dashed lines in Fig. 6) that define the de-
fect. In order to avoid an infinite splay energy, the molecules
must either rotate off the layer normal (relaxing the splay) and
adopt a more uniform orientation at the cusp, or the vertex of
the cusps must relax from a conical tip (infinite layer curva-
ture) to a bowl shape (finite curvature). In the former case,
the splay flexoelectric polarization would be significantly re-
duced, while in the latter case the curvature of the layer ap-
proaching a cusp would have the opposite sign of the curva-
ture at the bottom of the bowl (that replaces the sharp tip of the
cusp), again tending to cancel the splay flexoelectricity. These
effects can explain the absence of a detectable SH signal in the
control sample (ordinary smectic-A).

In the dimers forming the pseudo-layered NTB phase, the
same terminal groups on identical mesogenic units are con-
nected to opposite ends of the flexible spacer; this architecture
tends to eliminate an overall longitudinal molecular dipole,
and thus negate the conventional splay flexoelectric effect at
the molecular level. As will be made clear below, the polar-
ization selection of the SH light observed in our experiment
also cannot be explained by conventional splay flexoelectric
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polarization, which would have its major component along the
PFC axis (ẑ in Fig. 6). Moreover, any bend flexoelectricity as-
sociated with the equilibrium (heliconical) NTB structure av-
erages out over a length scale much shorter than an optical
wavelength.

Thus, we turn to a model that explicitly couples long wave-
length distortions of the heliconical director structure to dis-
tortions of a helical vector order parameter P (where P may
originate either from a net transverse dipole moment, or sim-
ply from the “shape” polarization, associated with the bent
conformation of LC dimers. It is convenient to introduce a di-
mensionless form for this order parameter, p = P/Psat , where
Psat corresponds to the saturated polarization at low tempera-
ture.

The NTB free energy density may then be expanded in terms
of the uniaxial director field n̂ and the polarization field p as9

FNT B =
K1

2
(∇ · n̂)2 +

K2

2
(n̂ ·∇× n̂)2 (1)

+
K3

2
[n̂× (∇× n̂)]2 +

µ

2
|p|2 +

ν

4
|p|4

+
κ

2
(∇p)2−Λ[n̂× (∇× n̂)] ·p+η(n̂ ·p)2.

Here, K1, K2, and K3 are the usual Frank elastic constants for
splay, twist, and bend distortions of the nematic director n̂.
The coefficient µ = µ0(T −T0) is the temperature-dependent
Landau coefficient for the polarization p (µ0 being a constant),
while ν > 0 is a higher-order, temperature-independent Lan-
dau coefficient. The elastic constant κ penalizes spatial dis-
tortions in p, and the coefficient Λ couples p with bend dis-
tortions. The last term (not included in Ref.9), with η > 0,
penalizes any component of p that lies along n̂. Because p is
defined as a dimensionless quantity, the Landau coefficients µ

and ν carry the same units, and κ has the same units as the
Frank constants.

In the NTB phase, the director field has the equilib-
rium heliconical modulation n̂ = ẑcosβ + x̂sinβ cos(q0z) +
ŷsinβ sin(q0z), with pitch wavenumber q0 and cone angle β .
Likewise, the polarization field has the equilibrium helical
modulation p = x̂p0 sin(q0z)− ŷp0 cos(q0z), with magnitude
p0, perpendicular to n̂ and to the pitch axis ẑ, as shown in
Fig. 1(b). In the nematic phase, β and p0 are both zero while
q0 is undefined; in the NTB phase, these quantities all become
non-zero.

Let us now consider an imposed spatial variation in the
phase, Φ, of the helicoidal modulation. This corresponds to a
displacement, u = −Φ/q0, of the NTB “pseudo-layers” along
the equilibrium layer normal ẑ. Under the imposed distortion,
the layer plane varies in orientation, and the directions of n̂
and p also generally change in order to minimize FNT B. To
describe such a change in n̂, we introduce the orthogonal triad
of unit vectors ê1, ê2, t̂, where t̂ is obtained by rotation of ẑ

about an arbitrary axis in the x-y plane, and ê1 and ê2 are the
transformed x̂ and ŷ under this rotation. Then the distorted n̂
is

n̂ = ê1 sinβ cos(q0z−q0u)+ ê2 sinβ sin(q0z−q0u)+
t̂cosβ . (2)

The rotated coordinate unit vectors may be expressed in the
xyz system as

t̂ = txx̂+ tyŷ+ tzẑ,

ê1 =
t2
y + t2

x tz
t2
x + t2

y
x̂+

txty(−1+ tz)
t2
x + t2

y
ŷ− txẑ,

ê2 =
txty(−1+ tz)

t2
x + t2

y
x̂+

t2
x + t2

y tz
t2
x + t2

y
ŷ− tyẑ, (3)

where tz =
√

1− t2
x − t2

y , and tx, ty are the x, y components of

t̂.
Since p is not a unit vector and need not, in general, remain

orthogonal to n̂ under the imposed distortion, we write,

p = ê1 p0 sin(q0z−q0u)− ê2 p0 cos(q0z−q0u)+
+pxx̂+ pyŷ+ pzẑ. (4)

Here px, py, pz are the xyz components of the distortion in p
that does not remain perpendicular to n̂.

The calculation of these components for an imposed
“pseudo-layer” displacement u = u(x), which varies along an
axis in the equilibrium layer plane (and therefore describes
layer bending), and for u = u(z), which varies along the layer
normal (describing layer compression), is outlined in the Ap-
pendix. For simplicity, the calculation is done only to linear
order in {px, py, pz, tx, ty}.

The results are, assuming large η 17 (see comment in Ap-
pendix), small β (β . 10◦ close to the NTB-N transition3,6,
and neglecting the contribution from the gradient terms in po-
larization for long wavelength distortions:

px ≈−
Λq0

2η
ty, (5)

py ≈
Λq0

2η

(
tx +

du
dx

)
, (6)

pz ≈
Λβ 2

4η

(
dtx
dx
−q0ty

du
dx

)
, (7)

for u = u(x), and

p⊥ ≈−
√

2Λ

ηβ 2
dt⊥
dz

, (8)

pz ≈ 0, (9)
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Fig. 6 (a): 3D rendering of pseudo-layer distortion surrounding the core region of a PFC in the limit of infinite layer compression elastic
constant. The two overlapping parabolae (dashed lines) pass through each other’s focus and lie in orthogonal planes, whose intersection
defines the axis of the PFC. The parabolae are the loci of conical cusps (“pinch” points) in the deformation of the layer planes. Since these are
points of infinite curvature energy, they will relax into rounded “bowls” in the actual case of finite compression constant. The PFC axis
corresponds to the direction of average director alignment (applied magnetic field direction H) in our experiment. An orthogonal direction,
perpendicular to the plane of one parabola, corresponds to the wavevector of the incident (fundamental light), k̂ω and to the forward direction
of the transmitted SH light. (b): Two distorted “pseudolayers”, extracted from the stack in (a) and located at equal distances (±z0) from the
center (z = 0) of the PFC. The components of the induced polarization field p due to an imposed layer displacement u along ẑ, as predicted
from the model discussed in the text, are shown in the cusp regions (assumed rounded in the limit of finite layer compression constant). Note
in particular that the model predicts that the component of p perpendicular to the PFC axis is substantially larger than that along it. The
fundamental and second harmonic polarization axes (V and H) are also indicated; these correspond to vertical and horizontal directions with
respect to the k̂ω −H plane of the experiment (and not with respect to those directions along the page.

for u = u(z). Here p⊥ = pxx̂ + pyŷ and similarly for t⊥. The
approximate equality signs in Eqs. (5)-(9) reflect the approxi-
mation associated with our linear analysis in {px, py, pz, tx, ty}.

Now let us apply these results to the cusp region of a PFC
observed in the NTB phase. We employ them with the un-
derstanding that they are based on a linear analysis, and thus
only represent leading order contributions to p in the case of
“pseudo-layer” distortion associated with a PFC. We also as-
sume that the size of the cusp region is small compared to the
size of a homochiral domain (i.e., domain with single handed-
ness of the underlying heliconical director structure)8, so that
the polarization p is not washed out in the cusp region due to
mixed left and right-handed helical domains.

As mentioned above and particularly in the case of the NTB
phase, where the “pseudo-layer” compression elastic constant
is substantially lower than that for a typical smectic LC28,29,
the sharp tips of the cusps should realistically be envisioned
as rounded caps. This also means that in addition to “pseudo
layer” bending, there will be a compression of the layers in
the cusp region. However, as described in the Appendix, for
du/dz � 1, the Euler-Lagrange equation for t⊥ gives t⊥ = 0
to lowest order, and in that case Eqs. (8) and (9) imply p ≈ 0
for “pseudo-layer” compression. Therefore, we will focus on

the effect of layer bending.
Consider then a pair of distorted layers equidistant from the

center of the PFC, at +z0 and −z0, along the z axis, as shown
in Fig. 6(b), and consider first the behavior in a slice taken
through the cusp in the x− z plane for the layer at −z0. Along
x, the displacement u is asymmetric through the cusp region
and thus tx will be also; this will lead to a net py and pz, ac-
cording to Eqs. (6)–(7). On the other hand, for u = u(x), ty = 0
to lowest order (see Appendix), and thus Eq. (5) implies px ≈ 0
in the −z0 layer. On opposite sides of the x axis, i.e., x→−x,
the direction of py is reversed.

Next, for a slice taken in the y−z plane, we may interchange
x and y in Eqs. (5)–(7); however, the mirror symmetry across
this plane means that only the pz component of the polariza-
tion will survive. The net components of p in the cusp region
are shown qualitatively in Fig. 6(b); the relative magnitudes
shown for py and pz will be explained shortly.

For the layer at +z0, the results are the same as for −z0,
except for a 90◦ rotation around the z axis, equivalent to an
exchange of px and py and a reversal in the direction of pz
(see Fig. 6(b)).

The relative magnitudes of py and pz in the−z0 layer (or px
and pz in the +z0 layer) may be estimated if we consider a har-
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monic form for u – specifically, a Fourier component whose
wavenumber qx = 2π/δ corresponds to the length scale of the
cusp region of the PFC. That scale can be estimated27 from the
width δ ' 2µm of the birefringent arms of the parabolae (the
loci of PFC cusps) in the textures presented in Fig. 2. Then
taking u = u(x) = u0 exp(iqxx), the Euler Lagrange equation
for tx yields (see Appendix)

tx ≈−
K3q2

0β 2

K1q2
x +K3q2

0β 2

du
dx

. (10)

Typically, β = 0.18 rad, q0 = 2π/(0.01µm), and qx =
2π/(2µm), so q2

x � q2
0β 2. Then the right hand side of the

expression for tx may be expanded, yielding

tx ≈
(
−1+

K1q2
x

K3q2
0β 2

)
du
dx

(11)

Inserting this result into Eqs. (6) and (7) with u = u0 exp(iqxx),
we obtain to lowest order

py ≈ i
Λ

2η

K1

K3

q3
x

q0β 2 u, (12)

pz ≈ Λ

4η
β

2q2
xu. (13)

Then, using the numerical values given above, and taking
K1 ' 2K3 (for the bare nematic values)3, we estimate∣∣∣∣ pz

py

∣∣∣∣≈ β 4

2
K3

K1

q0

qx
≈ 0.05 (14)

Since the SH signal should scale as the square of p (as-
suming the components of the second order susceptibility χ(2)

scale with the magnitude of p), the contribution from pz is
negligible. A similar result applies to the layer at +z0. In the
following subsection, we will therefore concentrate only on
the component of p perpendicular to the axis of the PFC.

4.2 Nonlinear susceptibility in the NTB phase

Although SHG could possibly arise due to chiral symmetry
breaking in the undistorted NTB state, this structural chiral-
ity averages out over a molecular length scale (the helicon-
ical pitch) that is much shorter than the optical wavelength.
We detected SH signal from our samples only in the presence
of pseudo-layer distortion specifically associated with PFCs.
The situation is similar to the chiral smectic-C* phase, where
the helical polarization must be partly unwound by an applied
field in order to observe a signal30.

Therefore, we propose that the broken centrosymmetry pro-
duced by the induced polarization p, over length scales com-
parable to or longer than the optical scale, is responsible for
the observed SHG. As shown in Fig. 6(b), and based on the

arguments above, the dominant component of the distortion-
induced polarization is normal to the axis of the PFC and to
the direction of the applied magnetic field, both of which are
along ẑ. Eq. (6)and the discussion above reveal that the po-
larization arises essentially from an electroclinic effect, where
the coarse-grain director tilts with respect to the pseudo-layer
normal and the polarization develops along the axis perpen-
dicular to the tilt plane. Indeed, for small distortions, the tilt
angle is given by the sum tx +du/dx in Eq. (6).

The local symmetry is therefore that of a tilted chiral smec-
tic – namely, C2 symmetry, with symmetry axis (p) perpen-
dicular to the axis of the PFC (ẑ). As evidenced in Fig. 2, the
plane of one parabola of the PFCs is oriented parallel to the
substrates. We take this as the y− z plane and the incident
(fundamental) light propagation direction as k̂ω = x̂. Then the
polarizations V or H of the fundamental or second harmonic
waves are V = ŷ and H = ẑ, and the second harmonic intensi-
ties for the various polarization combinations are,

I(Hω →V2ω) ∝ |χ(2)
V HH |

2 = |χ(2)
yzz |2,

I(Hω → H2ω) ∝ |χ(2)
HHH |

2 = |χ(2)
zzz |2,

I(Vω → H2ω) ∝ |χ(2)
HVV |

2 = |χ(2)
zyy |2,

I(Vω →V2ω) ∝ |χ(2)
VVV |

2 = |χ(2)
yyy |2. (15)

Here χ(2) is the second order susceptibility for C2 symmetry,
with symmetry axis = ŷ (−z0 layer in Fig. 6(b)) or x̂ (+z0
layer). Assuming Kleinman’s symmetry, the non-vanishing
components of χ(2) with recurring indices are31,

χ
(2)
xxy = χ

(2)
xyx = χ

(2)
yxx , χ

(2)
zzy = χ

(2)
zyz = χ

(2)
yzz , χ

(2)
yyy

for −z0 layers, and

χ
(2)
yyx = χ

(2)
yxy = χ

(2)
xyy , χ

(2)
zzx = χ

(2)
zxz = χ

(2)
xzz , χ

(2)
xxx

for +z0 layers. From these lists and the relations for SH inten-
sity in Eq. (15), we conclude that the intensity for H polarized
output vanishes, in agreement with the polarization selection
observed in our experiment (Figs. 3 and 4), and that the SH
signal is generated predominantly by the induced polarization
in the −z0 layers (where p ‖ ŷ) in Fig. 6(b).

Fig. 3 reveals that the SH intensity is systematically lower
for a Vω → V2ω process than for Hω → V2ω , indicating
|χ(2)

yzz |2 > |χ(2)
yyy |2 according to Eq. (15). We can then suggest

the following explanation for the splitting of the forward peak
in the Vω → V2ω data: In linear light scattering, we have ob-
served strong depolarized scattering from defect structure at
small angles in the NTB phase. Consider then a process by
which small-angle linear scattering converts polarization Vω

to Hω , and then a SH process that converts Hω to V2ω . This
could lead to a slight splitting of the forward peak, as ob-
served in Fig. 3 for the Vω → V2ω data. On the other hand,
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the sequence Hω → Vω → V2ω would be less efficient, pro-
ducing perhaps a broadening but not a splitting of the peak in
the Hω → V2ω data. Moreover, the peak for Vω → V2ω splits
along the magnetic-field alignment direction – i.e., parallel to
the axis of the PFCs. This is because the distortion-induced
polarization near the core region will be concentrated more
along the PFC axis than normal it.

Finally, we note that the major components of the induced
polarization are oppositely directed on opposite sides of the
parabola axis (Fig. 6(b)), even if the entire PFC is in a ho-
mochiral domain. In this case, there will be no net SH output
when the distance across the parabola yields a destructive in-
terference condition, or when the vector sum of polarizations
cancels out over a length scale small compared to the coher-
ence length λ2ω/(n2ω −nω)' 5 µm (n = refractive index)31.
As mentioned in the Results section, this effect accounts for
the relatively weak signal recorded in the experiment. The
phase factor is important, and consequently the signal level is
not a direct measure of the amplitude of the helical polariza-
tion field.

5 Conclusion

In this paper, we have used second harmonic light scattering to
probe polar molecular organization in the nematic twist-bend
phase. The SH signal arises from parabolic focal conic defects
in the “pseudo-layer” structure of the NTB state. Its key fea-
tures can be explained by a coarse-grained free energy that
couples the “layer” deformation to long wavelength distor-
tions of a helical polarization wave, which serves as the NTB
order parameter. In the future, we hope to employ focused fun-
damental radiation in order to generate SH light from specific
regions of an individual PFC defect in a thin sample. This ap-
proach, combined with a more detailed treatment of the PFC
structure, could provide a direct measure of the magnitude of
the NTB polarization field.
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Appendix:

Induced polarization due to distortion of NTB
“pseudo-layers”

In this appendix, we sketch the details leading to Eqs. (5)–(10)
of the text. We first consider a “pseudo-layer” displacement u
that varies along a single direction in the plane of the equilib-
rium “pseudo-layers” – e.g., u = u(x). This corresponds to a
bending of the layers without compression along the average
layer normal (ẑ).

Expressions for the induced {px, py, pz, tx, ty} that mini-
mize the free energy under the imposed u(x) may be ob-
tained by the following procedure: (1) Combine Eqs. (2)–(4)
in the text and insert the result into the free energy density,
Eq. (1); (2) “Coarse-grain” the free energy density by aver-
aging with respect to z over a helicoidal pitch, 2π/q0, based
on the assumption that u and the variables {px, py, pz, tx, ty}
vary slowly over the length scales comparable to the pitch;
(3) Obtain and solve the Euler-Lagrange equations for the
set {px, py, pz, tx, ty} that minimize the coarse-grained free en-
rgy density. In step (2), the coarse-grained F is evaluated as
Fcg(t̂,u,p;x) = q0

2π

∫ 2π/q0
0 F(n̂,p;x,z)dz. The assumption on

relative length scales is reasonable, since the pitch is on the
molecular scale, while the features associated with the PFC
textures observed in the NTB phase have sizes & 1µm.

We implement this program, and also take a long wave-
length limit for the distortion u(x) and in that limit assume
that contributions from gradients in p are negligible compared
to the non-gradient terms in the free energy. This is also rea-
sonable since the polarization elasticity κ has been estimated
to be fairly small compared to the other elastic constants (i.e.,
the director elasticities) in the NTB phase17. We then find to
lowest order in {px, py, pz, tx, ty},

px = − Λq0 sin2
β

2(µ +2ν p2
0 +η sin2

β )
ty, (16)

py =
Λq0 sin2

β

2(µ +2ν p2
0 +η sin2

β )

(
tx +

du
dx

)
, (17)

pz =
Λsin2

β

2(2η cos2 β + µ +ν p2
0)
×(

dtx
dx
−q0ty

du
dx

)
. (18)

For u = u(x), {px, py, pz, tx, ty} are functions of x. Taking the
small β limit of Eqs. (A1)-(A3) yields Eqs. (5)-(7) of the text.

To linear order in {tx, ty}, the Euler-Lagrange equations that
must be solved to obtain t̂ in terms of a given u(x), and thus
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complete the solution for p, are

−Ax

2
d2tx
dx2 +

Bx

2

(
tx +

du
dx

)
= 0, (19)

−
Ay

2
d2ty
dx2 +

By

2
ty = 0, (20)

where the coefficients (together with their small β limits) are
given by

Ax = K1(cos2β +1)+
K2

32
(3−4cos2β + cos4β )+

K3

32
(28+4cos2β )sin2

β −

Λ2 sin4
β

2(2η cos2 β + µ +ν p2
0)

≈ 2K1, (21)

Bx = By = Λp0q0 sin2β +
q2

0 sin2
β

2

[
2K1 +

(3cos2β −1)K2−
Λ2 sin2

β

2(µ +2ν p2
0 +η sin2

β )

]
≈ 2Λp0q0β , (22)

Ay =
41+20cos2β +3cos4β

32
K2 +

7−4cos2β −3cos4β

32
K3

≈ 2K2. (23)

Note that Eq. (20) is independent of the imposed distortion
u. Thus, to linear order the only physically acceptable solution
is ty = 0, implying px = 0 in Eq. (16).

Next we consider a “pseudo-layer” displacement that varies
along the axis normal to the equilibrium layer planes – i.e., a
layer compression, with u = u(z). Carrying through a similar
analysis as above, we find to lowest order in {p⊥ = pxx̂ +
pyŷ , t⊥ = txx̂+ tyŷ}, and neglecting terms containing κ ,

p⊥ =−
√

2Λcos2 β

µ +2ν p2
0 +η sin2

β

dt⊥
dz

, (24)

pz = 0, (25)

Here {p⊥, t⊥} depend on z. Eq. (8) in the text corresponds to
the large η sin2

β and small β limit of Eq. (24). The former
may be justified by a recent dynamic light scattering study17

of the NTB phase, where, based on the very high relaxation rate
associated with polarization fluctuations, the value of η/µ0 is
estimated to be of order 105 K. (This study was performed on
a NTB material containing a close homolog of the compound
DTC5C7 studied in the present work.)

The Euler-Lagrange equation for t⊥ (linearized in t⊥) is

−A⊥
2

d2t⊥
dz2 +

(
B⊥+C⊥

du
dz

)(
1− du

dz

)
t⊥ = 0, (26)

where

A⊥ = K1 +
K2

4
+

7K3

4
+(2K3−K1)×

cos2β +
(K3−K2)cos4β

4
+

2Λ2 cos4 β

µ +2ν p2
0 +η sin2

β
, (27)

B⊥ = C⊥+Λp0q0 sin2β , (28)

C⊥ = −2q2
0 sin2

β

[
K1 +

3cos2β −1
2

×

(K2−K3)
]
. (29)

For du/dz � 1, Eq. (26) reduces to −(A⊥/2)d2t⊥/dz2 +
B⊥t⊥ = 0, the only physical solution to which is t⊥ = 0.

Finally, if we consider a simple harmonic form for u(x),
u(x) = u0 exp(iqxx), then Eqs. (19), (21) and (22) yield (for
small β ),

tx =− p0q0Λβ

K1q2
x + p0q0Λβ

du
dx

(30)

Since for small β the polarization magnitude p0 in the NTB
phase is17 p0 ≈ K3q0β/Λ, Eq. (30) produces Eq. (10) of the
text.
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