7,825 research outputs found
Solar radiation and atmospheric absorption in the mm wave region Semiannual report, 1 Apr. - 30 Sep. 1968
Study of absorption and emission of millimeter wave
Effects of stellar outflows on interstellar sulfur oxide chemistry
Interferometer Maps with 2" to 6" resolution of a number of regions with active star formation (Orion A, W49, W51, SGRB2) show that the distribution of the molecule SO is very compact around stellar outflow sources. Both SO and SO2 were studied near three outflows, OrionA/IRc2 and two sources in W49. The two molecules have similar distributions and abundances. More than 95% of the emission comes from regions whose extents are only .05 to .2 pc., being larger around the more energetic sources. Their spectra are broad, 30 km/sec or more, suggesting that the oxide production is associated with the flows. The outflows are identified by water masers and by extended bipolar flows in SiO. Maps in other molecules, such as HCO+ and CS, which have similar collisional excitation requirements, have much greater spatial extent. Thus it appears that the SO and SO2 abundances are truly compact and are closely associated with the outflows
BIMA and Keck Imaging of the Radio Ring PKS 1830-211
We discuss BIMA (Berkeley Illinois Maryland Association) data and present new
high quality optical and near-IR Keck images of the bright radio ring PKS
1830-211. Applying a powerful new deconvolution algorithm we have been able to
identify both images of the radio source. In addition we recover an extended
source in the optical, consistent with the expected location of the lensing
galaxy. The source counterparts are very red, I-K=7, suggesting strong Galactic
absorption with additional absorption by the lensing galaxy at z=0.885, and
consistent with the detection of high redshift molecules in the lens.Comment: To be published in the ASP Conference Proceedings, 'Highly Redshifted
Radio Lines', Greenbank, W
A Bayesian approach to the follow-up of candidate gravitational wave signals
Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo
and Tama-300) have now reached high sensitivity and duty cycle. We present a
Bayesian evidence-based approach to the search for gravitational waves, in
particular aimed at the followup of candidate events generated by the analysis
pipeline. We introduce and demonstrate an efficient method to compute the
evidence and odds ratio between different models, and illustrate this approach
using the specific case of the gravitational wave signal generated during the
inspiral phase of binary systems, modelled at the leading quadrupole Newtonian
order, in synthetic noise. We show that the method is effective in detecting
signals at the detection threshold and it is robust against (some types of)
instrumental artefacts. The computational efficiency of this method makes it
scalable to the analysis of all the triggers generated by the analysis
pipelines to search for coalescing binaries in surveys with ground-based
interferometers, and to a whole variety of signal waveforms, characterised by a
larger number of parameters.Comment: 9 page
Light scattering study of the “pseudo-layer” compression elastic constant in a twist-bend nematic liquid crystal
The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or “pseudo-layers”, each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining “layer” compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant Keff1. The magnitude of Keff1 is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∼10⁶ Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the “pseudo-layer” structure of the TB phase with Beff in the range 10³–10⁴ Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director
Second harmonic light scattering induced by defects in the twist-bend nematic phase of liquid crystal dimers
The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orientationally ordered mesophase -- the first distinct nematic variant discovered in many years. The NTB phase is distinguished by a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heliconical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensitive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural defects. These defects are parabolic focal conics of smectic-like ``pseudo-layers", defined by planes of equivalent phase in a coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two
The redshift of the gravitationally lensed radio source PKS1830-211
We report on the spectroscopic identification and the long awaited redshift
measurement of the heavily obscured, gravitationally lensed radio source PKS
1830-211, which was first observed as a radio Einstein ring. The NE component
of the doubly imaged core is identified, in our infrared spectrum covering the
wavelength range 1.5-2.5 microns, as an impressively reddened quasar at
z=2.507. Our redshift measurement, together with the recently measured time
delay (Lovell et al.), means that we are a step closer to determining the
Hubble constant from this lens. Converting the time delay into the Hubble
constant by using existing models leads to high values for the Hubble constant.
Since the lensing galaxy lies very close to the center of the lensed ring,
improving the error bars on the Hubble constant will require not only a more
precise time delay measurement, but also very precise astrometry of the whole
system.Comment: 11 pages, 2 figures, Accepted ApJ
- …