204 research outputs found
Atherosclerotic carotid plaque composition: a 3T and 7T MRI-histology correlation study
Background and Purpose
Carotid artery atherosclerotic plaque composition may influence plaque stability and risk of
thromboembolic events, and non-invasive plaque imaging may therefore permit risk
stratification for clinical management. Plaque composition was compared using non-invasive
in-vivo (3T) and ex-vivo (7T) MRI and histopathological examination.
Methods
Thirty three endarterectomy cross sections, from 13 patients, were studied. The datasets
consisted of in-vivo 3T MRI, ex-vivo 7T MRI and histopathology. Semi-automated
segmentation methods were used to measure areas of different plaque components. Bland-
Altman plots and mean difference with 95% confidence interval were carried out.
Results
There was general quantitative agreement between areas derived from semi-automated
segmentation of MRI data and histology measurements. The mean differences and 95%
confidence bounds in the relative to total plaque area between 3T versus Histology were:
fibrous tissue 4.99 % (-4.56 to 14.56), lipid-rich/necrotic core (LR/NC) with haemorrhage -
1.81% (-14.11 to 10.48), LR/NC without haemorrhage -2.43% (-13.04 to 8.17), and
calcification -3.18% (-11.55 to 5.18). The mean differences and 95% confidence bounds in
the relative to total plaque area between 7T and histology were: fibrous tissue 3.17 % (-3.17
to 9.52), LR/NC with haemorrhage -0.55% (-9.06 to 7.95), LR/NC without haemorrhage -
12.62% (-19.8 to -5.45), and calcification -2.43% (-9.97 to 4.73).
Conclusions
This study provides evidence that semi-automated segmentation of 3T/7T MRI techniques
can help to determine atherosclerotic plaque composition. In particular, the high resolution of
ex-vivo 7T data was able to highlight greater detail in the atherosclerotic plaque composition.
High field MRI may therefore have advantages for in vivo carotid plaque MR imaging
Unitary designs and codes
A unitary design is a collection of unitary matrices that approximate the
entire unitary group, much like a spherical design approximates the entire unit
sphere. In this paper, we use irreducible representations of the unitary group
to find a general lower bound on the size of a unitary t-design in U(d), for
any d and t. We also introduce the notion of a unitary code - a subset of U(d)
in which the trace inner product of any pair of matrices is restricted to only
a small number of distinct values - and give an upper bound for the size of a
code of degree s in U(d) for any d and s. These bounds can be strengthened when
the particular inner product values that occur in the code or design are known.
Finally, we describe some constructions of designs: we give an upper bound on
the size of the smallest weighted unitary t-design in U(d), and we catalogue
some t-designs that arise from finite groups.Comment: 25 pages, no figure
Sequential design of computer experiments for the estimation of a probability of failure
This paper deals with the problem of estimating the volume of the excursion
set of a function above a given threshold,
under a probability measure on that is assumed to be known. In
the industrial world, this corresponds to the problem of estimating a
probability of failure of a system. When only an expensive-to-simulate model of
the system is available, the budget for simulations is usually severely limited
and therefore classical Monte Carlo methods ought to be avoided. One of the
main contributions of this article is to derive SUR (stepwise uncertainty
reduction) strategies from a Bayesian-theoretic formulation of the problem of
estimating a probability of failure. These sequential strategies use a Gaussian
process model of and aim at performing evaluations of as efficiently as
possible to infer the value of the probability of failure. We compare these
strategies to other strategies also based on a Gaussian process model for
estimating a probability of failure.Comment: This is an author-generated postprint version. The published version
is available at http://www.springerlink.co
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
A Binary Lensing Event Toward the LMC: Observations and Dark Matter Implications
The MACHO collaboration has recently analyzed 2.1 years of photometric data
for about 8.5 million stars in the Large Magellanic Cloud (LMC). This analysis
has revealed 8 candidate microlensing events and a total microlensing optical
depth of . This significantly
exceeds the number of events (1.1) and the microlensing optical depth predicted
from known stellar populations: , but it is
consistent with models in which about half of the standard dark halo mass is
composed of Machos of mass \sim 0.5 \msun. One of these 8 events appears to
be a binary lensing event with a caustic crossing that is partially resolved
which allows us to estimate the distance to the lenses. If the source star is
not a short period binary star, then we show that the lens system is very
likely to reside in the LMC. However, if we assume that the optical depth for
LMC-LMC lensing is large enough to account for our entire lensing signal, then
the binary event does not appear to be consistent with lensing of a single LMC
source star by a binary residing in the LMC. Thus, while the binary lens may
indeed reside in the LMC, there is no indication that most of the lenses reside
in the LMC.Comment: 5 pages, 3 postscript figures included; To appear in the Proceedings
of the Dark Matter '96 Conference held in Santa Monica, CA, Feb., 199
Recommended from our members
Complete fabrication of target experimental chamber and implement initial target diagnostics to be used for the first target experiments in NDCX-1
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has completed the fabrication of a new experimental target chamber facility for future Warm Dense Matter (WDM) experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. This achievement provides to the HIFS-VNL unique and state-of-the-art experimental capabilities in preparation for the planned target heating experiments using intense heavy ion beams
The MACHO Project 2nd Year LMC Microlensing Results and Dark Matter Implications
The MACHO Project is searching for galactic dark matter in the form of
massive compact halo objects (Machos). Millions of stars in the Large
Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge are
photometrically monitored in an attempt to detect rare gravitational
microlensing events caused by otherwise invisible Machos. Analysis of two years
of photometry on 8.5 million stars in the LMC reveals 8 candidate microlensing
events, far more than the event expected from lensing by low-mass stars
in known galactic populations. From these eight events we estimate the optical
depth towards the LMC from events with 2 < \that < 200 days to be
\tau_2^{200} \approx 2.9 ^{+1.4}_{-0.9} \ten{-7}. This exceeds the optical
depth of 0.5\ten{-7} expected from known stars and is to be compared with an
optical depth of 4.7\ten{-7} predicted for a ``standard'' halo composed
entirely of Machos. The total mass in this lensing population is \approx
2^{+1.2}_{-0.7} \ten{11} \msun (within 50 kpc from the Galactic center). Event
timescales yield a most probable Macho mass of 0.5^{+0.3}_{-0.2}\msun,
although this value is quite model dependent.Comment: 10 pages, 6 epsf figures and style file included, 451k, also at
http://wwwmacho.mcmaster.ca/Pubs/Pubs.html; To appear in the Proceedings of
"Sources and Detection of Dark Matter in the Universe", Santa Monica, CA,
Feb., 199
Embracing plurality through oral language
The transmission and dissemination of knowledge in Aboriginal societies for the most part occurs orally in an Aboriginal language or in Aboriginal English. However, whilst support is given to speaking skills in Indigenous communities, in our education system less emphasis is given to developing equivalent oral communicative competence in Standard Australian English (SAE). Instead the focus is given to the ongoing assessment of reading and writing skills and grammatical knowledge – this is in direct contrast to the existing language experience of Aboriginal students. Therefore, for Aboriginal students to participate in mainstream society, we suggest that there is a need to nurture oral language skills in SAE and provide learners with the experience to develop their code-switching ability to maintain continuity with their first language or dialect. Drawing on previous research that we and others have undertaken at several schools, this paper highlights the need for three fundamental changes to take place within language education: (1) school policies to change and explicitly accept and support Aboriginal English in code-switching situations; (2) familiarity among school staff about the major differences between Aboriginal English and SAE; and (3) tasks that focus on developing and practising the ‘when, why and how’ of code-switching
A type 2 diabetes-associated functional regulatory variant in a pancreatic islet enhancer at the ADCY5 locus
Molecular mechanisms remain unknown for most type 2 diabetes genome-wide association study identified loci. Variants associated with type 2 diabetes and fasting glucose levels reside in introns of ADCY5, a gene that encodes adenylate cyclase 5. Adenylate cyclase 5 catalyzes the production of cyclic AMP, which is a second messenger molecule involved in cell signaling and pancreatic β-Cell insulin secretion. We demonstrated that type 2 diabetes risk alleles are associated with decreased ADCY5 expression in human islets and examined candidate variants for regulatory function. rs11708067 overlaps a predicted enhancer region in pancreatic islets. The type 2 diabetes risk rs11708067-A allele showed fewer H3K27ac ChIP-seq reads in human islets, lower transcriptional activity in reporter assays in rodent b-cells (rat 832/13 and mouse MIN6), and increased nuclear protein binding compared with the rs11708067-G allele. Homozygous deletion of the orthologous enhancer region in 832/13 cells resulted in a 64% reduction in expression level of Adcy5, but not adjacent gene Sec22a, and a 39% reduction in insulin secretion. Together, these data suggest that rs11708067-A risk allele contributes to type 2 diabetes by disrupting an islet enhancer, which results in reduced ADCY5 expression and impaired insulin secretion
- …
