1,149 research outputs found

    Alternative model for the administration and analysis of research-based assessments

    Full text link
    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption of these assessments within the broader community of physics instructors. Within this historical model, assessment developers create high quality, validated assessments, make them available for a wide range of instructors to use, and provide minimal (if any) support to assist with administration or analysis of the results. Here, we present and discuss an alternative model for assessment dissemination, which is characterized by centralized data collection and analysis. This model provides a greater degree of support for both researchers and instructors in order to more explicitly support adoption of research-based assessments. Specifically, we describe our experiences developing a centralized, automated system for an attitudinal assessment we previously created to examine students' epistemologies and expectations about experimental physics. This system provides a proof-of-concept that we use to discuss the advantages associated with centralized administration and data collection for research-based assessments in PER. We also discuss the challenges that we encountered while developing, maintaining, and automating this system. Ultimately, we argue that centralized administration and data collection for standardized assessments is a viable and potentially advantageous alternative to the default model characterized by decentralized administration and analysis. Moreover, with the help of online administration and automation, this model can support the long-term sustainability of centralized assessment systems.Comment: 7 pages, 1 figure, accepted in Phys. Rev. PE

    Sediment Quality in Puget Sound Year 3 - Southern Puget Sound

    Get PDF
    As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacomaā€™s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three ā€œsediment quality triadā€ parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages

    Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Get PDF
    Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins

    Interleukin-4 induction of the CC chemokine TARC (CCL17) in murine macrophages is mediated by multiple STAT6 sites in the TARC gene promoter

    Get PDF
    BACKGROUND: Macrophages (MĪø) play a central role in the innate immune response and in the pathology of chronic inflammatory diseases. Macrophages treated with Th2-type cytokines such as Interleukin-4 (IL-4) and Interleukin-13 (IL-13) exhibit an altered phenotype and such alternatively activated macrophages are important in the pathology of diseases characterised by allergic inflammation including asthma and atopic dermatitis. The CC chemokine Thymus and Activation-Regulated Chemokine (TARC/CCL17) and its murine homologue (mTARC/ABCD-2) bind to the chemokine receptor CCR4, and direct T-cell and macrophage recruitment into areas of allergic inflammation. Delineating the molecular mechanisms responsible for the IL-4 induction of TARC expression will be important for a better understanding of the role of Th2 cytokines in allergic disease. RESULTS: We demonstrate that mTARC mRNA and protein are potently induced by the Th2 cytokine, Interleukin-4 (IL-4), and inhibited by Interferon-Ī³ (IFN-Ī³) in primary macrophages (MĪø). IL-4 induction of mTARC occurs in the presence of PI3 kinase pathway and translation inhibitors, but not in the absence of STAT6 transcription factor, suggesting a direct-acting STAT6-mediated pathway of mTARC transcriptional activation. We have functionally characterised eleven putative STAT6 sites identified in the mTARC proximal promoter and determined that five of these contribute to the IL-4 induction of mTARC. By in vitro binding assays and transient transfection of isolated sites into the RAW 264.7 MĪø cell-line, we demonstrate that these sites have widely different capacities for binding and activation by STAT6. Site-directed mutagenesis of these sites within the context of the mTARC proximal promoter revealed that the two most proximal sites, conserved between the human and mouse genes, are important mediators of the IL-4 response. CONCLUSION: The induction of mTARC by IL-4 results from cooperative interactions between STAT6 sites within the mTARC gene promoter. Significantly, we have shown that transfer of the nine most proximal mTARC STAT6 sites in their endogenous conformation confers potent (up to 130-fold) IL-4 inducibility on heterologous promoters. These promoter elements constitute important and sensitive IL-4-responsive transcriptional units that could be used to drive transgene expression in sites of Th2 inflammation in vivo
    • ā€¦
    corecore