135 research outputs found

    Radiative impact of aerosols generated from biomass burning

    Get PDF
    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m

    Seeing in the Dark and Through Walls: Using IR Cameras in STEM Outreach

    Get PDF
    The recent introduction of affordable infrared (IR) cameras and IR imaging attachments for smartphones has provided a unique opportunity to enhance the education of K-12 students. We have acquired a number of different IR cameras and IR camera attachments and discuss the utilization of these devices in both a college course and in our STEM and STEAM outreach efforts. While our outreach efforts have placed us in a classroom for just an hour or two at a time, thanks to local IEEE Chapter support, we have placed IR cameras in these classrooms for several weeks at a time. This paper discusses the outreach efforts and the utilization of IR cameras by 5th grade elementary school students and their classroom teachers after our departure and the wild enthusiasm that this approach has generated. A comparison of the different IR systems is also made

    First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    Get PDF
    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data

    Ocular iontophoresis of EGP-437 (dexamethasone phosphate) in dry eye patients: results of a randomized clinical trial

    Get PDF
    Michael A Patane¹, Amy Cohen¹, Stephen From¹, Gail Torkildsen², Donna Welch³, George W Ousler III³¹Eyegate Pharmaceuticals, Inc, Waltham, MA, USA; ²Andover Eye Associates, Andover, MA, USA; ³Ora, Inc, Andover, MA, USAPurpose: To assess safety and efficacy of EGP-437 (dexamethasone phosphate 40 mg/mL [DP]) in dry eye patients.Methods: The study employed a prospective, single-center, double-masked design utilizing a Controlled Adverse Environment (CAE). Patients (n = 103) with confirmed signs and symptoms of dry eye syndrome were randomized into 1 of 3 iontophoresis treatment groups: 7.5 mA-min at 2.5 mA (DP 7.5, n = 41); 10.5 mA-min at 3.5 mA (DP 10.5, n = 37); or 10.5 mA-min at 3.5 mA (placebo, n = 25). Three CAE visits and 4 follow-up visits occurred over 3 weeks. Patients meeting enrollment criteria received iontophoresis in both eyes after the second CAE exposure (visit 3) and before the third CAE exposure (visit 5). Primary efficacy endpoints were corneal staining and ocular discomfort. Secondary endpoints included tear film break-up time, ocular protection index (OPI), and symptomatology.Results: The DP 7.5 and DP 10.5 treatment groups showed statistically significant improvements in signs and symptoms of dry eye at various time points; however, the primary endpoints were not achieved. The DP 7.5 treatment group exhibited statistically significant improvements in corneal staining (when comparing the differences between study entry and exit, 3 weeks, P = 0.039), OPI (immediately following the second treatment, P = 0.048) and ocular discomfort at follow-up visits (a week after the first treatment, P = 0.032; 24 hours after the second treatment, P = 0.0032). Treatment-emergent adverse events (AEs) were experienced by 87% of patients and were consistent across all treatment groups. Most AEs were mild and no severe AEs were observed.Conclusion: Ocular iontophoresis of EGP-437 demonstrated statistically and clinically significant improvements in signs and symptoms of dry eye syndrome within a CAE model.Keywords: iontophoresis, dry eye, Controlled Adverse Environment (CAE), ocular protection index (OPI

    Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    Get PDF
    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America

    Remote Sensing of Global Fire Patterns, Aerosol Optical Thickness, and Carbon Monoxide During April 1994

    Get PDF
    Fires play a crucial role in several ecosystems. They are routinely used to burn forests in order to accommodate the needs of the expanding population, clear land for agricultural purposes, eliminate weeds and pests, regenerate nutrients in grazing and crop lands and produce energy for cooking and heating purposes. Most of the fires on earth are related to biomass burning in the tropics, although they are not confined to these latitudes. The boreal and tundra regions also experience fires on a yearly basis. The current study examines global fire patterns, Aerosol Optical Thickness (AOT) and carbon monoxide concentrations during April 9-19, 1994. Recently, global Advanced Very High Resolution Radiometer (AVHRR) data at nadir ground spatial resolution of 1 km are made available through the NASA/NOAA Pathfinder project. These data from April 9-19, 1994 are used to map fires over the earth. In summary, our analysis shows that fires from biomass burning appear to be the dominant factor for increased tropospheric CO concentrations as measured by the MAPS. The vertical transport of CO by convective activities, along with horizontal transport due to the prevailing winds, are responsible for the observed spatial distribution of CO

    Can proprioception really be improved by exercises?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41912/1/167-9-3-128_s001670100208.pd
    • …
    corecore