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SATELLITE ESTIMATES OF THE DIRECT RADIATIVE FORCING OF BIOMASS BURNING tt t ,/]_
AEROSOLS OVER SOUTH AMERICA AND AFRICA

1. INTRODUCTION

Atmospheric aerosol particles, both natural and
anthropogenic are important to the earth's radiative

balance. They scatter the incoming solar radiation and

modify the shortwave reflective properties of clouds
by acting as cloud condensation nuclei (CCN). The

first effect is termed as "direct radiative forcing" and
the second, "indirect radiative forcing'. Although it

has been recognized that aerosols exert a net cooling

influence on the atmosphere (Penner et aL, 1994;
Charlson et al., 1992), this effect has received much

less attention than the radiative forcings due to

greenhouse gases and clouds. The radiative forcing
due to aerosols is comparable in magnitude to current

anthropogenic greenhouse gas forcing but opposite in

sign (Houghton et aL, 1992). One contributing factor

for the inability of the current climate models to accu-

rately estimate surface temperatures may be due to
the inaccurate characterization of aerosol effects.

Therefore it is important to provide adequate valida-

tion information on the spatial, temporal and radiative

properties of aerosols. This will enable us to predict
realistic global estimates of aerosol radiative effects

more confidently.

Biomass burning, which is widely prevalent in the
tropics (Crutzen and Andreae 1990) is due to savanna

fires, shifting cultivation practices, deforestation, fuel

wood use, and burning agricultural residues (HaD and

Liu 1994). Although biomass burning activities are

intense in the dry season, which is between Decem-

ber and March in the Northern hemisphere, and be-
tween June and September in the Southern Hemi-

sphere, burning can take place whenever there is

plant material dry enough to burn (Andreae, 1991). In

South America, forest fires dominate the selva region,

while agricultural burning due to savanna fires domi-

nate the cerrado region. In tropical Africa, more than
two thirds of the biomass burned is due to savanna

fires, while the remaining portion is due to forest

fires. In tropical Asia, shifting cultivation, fuel wood

use, and deforestation provide for the majority of the

burning with less than 10% of the burning in the sa-

vannas. Due to these activities, there is widespread
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concern about the loss of biodiversity, spread of hu-
man and plant diseases via colonization, increase in

concentrations of greenhouse gases, changes on the

earth's radiative energy budget, effects on atmos-

pheric chemistry and increases in surface albedo and

water runoff. The implications of these activities on

both regional and global scales are relatively un-
known.

Current studies utilize some form of the radiative

transfer equation to estimate the direct and indirect

radiative forcing of biomass burning aerosols

(Anderson et aL, 1996; Penner et al., 1994). Using

various available information of biomass burning aero-

sols, Penner et al. (1994) estimate that the global
radiative forcing of smoke for both the direct and indi-
rect effect is on the order of about -2W/m 2 which is

comparable to the cooling by the sulfate aerosols

(Charlson et aL, 1992). Using more recent values on

biomass burning, Anderson et al. (1996) estimate

that the average biomass burning plume reduces sur-
face radiation by about 10-25 W/m 2 over land and

sea. Several assumptions have to be made in order to

estimate radiative forcing values from radiative trans-

fer equations. For example, the following variables

must be known: (1) rate of biomass burning, (2) frac-

tion of burnt material that goes into smoke, (3) life-

time of smoke in the atmosphere, (4) surface albedo,

(5) fraction of clouds, (6) optical properties of aero-

sols (optical depth, particle size), (7) atmospheric
conditions that influence aerosol properties, and (8)

aerosol mass absorption and scattering efficiency.

These estimates are drawn from limited samples
during field experiments and laboratory research. An-

other approach is to obtain the direct radiative forcing

values from satellite data (Christopher et al., 1996).

In this technique, the smoke from biomass burning is

first identified using satellite imagery such as the Ad-

vanced Very High Resolution Radiometer (AVHRR)

Local Area Coverage (LAC) data. Then using collo-
cated broadband measurements from the Earth Ra-

diation Budget Experiment (ERBE), the direct radiative

forcing of the smoke from biomass burning can be

estimated. Using eleven images over South America,

previous work showed the net radiative forcing of

smoke from biomass burning aerosols over South
America is about -36 W/m 2. The current study utilizes

66 AVHRR LAC images and coincident ERBE data to

characterize the fires, smoke and radiative forcings of

biomass burning aerosols over four major ecosystems
within South America.
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2. DATA SETS AND AREA OF STUDY

The Earth Radiation Budget Experiment launched

in 1984 by NASA, used broadband measurements in
the shortwave (0.25-4 I_m), Iongwave (4-50 I_m) and

total (0.25-50 I_m) part of the electromagnetic spec-

trum from three satellites (NOAA-9, NOAA-10, and

ERBS) to understand the radiation balance of the

earth-atmosphere system. Each satellite was

equipped with a scanner and a non-scanner to esti-
mate the top of atmosphere fluxes. The present study

utilizes the scanner measurements from the NOAA-9
satellite. Considering the point spread function, the

nominal spatial resolution of the ERBE scanner is
about 35 km. Although the AVHRR data are available

from February 1985-January 1988, the ERBE scanner
onboard NOAA-9 failed in January 1987. Therefore,

only two biomass burning seasons can be analyzed.
The AVHRR data that is used in this study, is of

the LAC form with an instantaneous field of view at

the satellite subpoint of about 1.1 km while at the

edge of the scan it degrades to about 4-4.5 km in the
cross-track direction and 1.5-2 km in the along-track

direction. The AVHRR views the earth through a

cross track angle of about + 55.4 ° from nadir and

measures radiation in five channels (0.58-0.68 I_m;

0.7-1.1 I_m, 3.5-3.9 #m, 10.5-11.5 I_m, and 11.5-

12.5 I_m). Channels 4 and 5 have onboard calibration
whereas channels 1 , 2, and 3 have no onboard cali-

bration. For NOAA-9, the north-bound equator cross-

ing is at 1420 Local Solar Time (LST), and it is during
this time that AVHRR LAC is traditionally available.

Since the spatial resolution of the AVHRR and ERBE
data are different, the data are first collocated by

finding the closest latitude and longitude of an

AVHRR pixel corresponding to the ERBE pixel. Once
the closest center pixel is determined, an average of

37X37 pixels is assumed to correspond to the foot-

print of the ERBE pixel. Collocation accuracies are

checked by comparing the AVHRR channel 1 reflec-
tances and the channel 4 temperatures of the 37X37

pixel box with the ERBE shortwave and Iongwave flux
values respectively. Linear correlation coefficients are

usually greater than 90%. The remaining 10%

probably accounts for the different spectral band-

passes of the two instruments.
In the present study, sixty-six images from July

(6 images), August (23 images), September (22 im-

ages), and October (15 images) are used to character-
ize the fires, smoke and the radiative forcing as a

function of ecosystems. However, only the August

1985 results are discussed. According to the Olson

world ecosystem data base (Olson, 1991), there are

four major ecosystems within South America. The

four ecosystems are 1) Tropical Rain Forest (TRF), 2)

Tropical Broadleaf Seasonal (TBS), 3) Sa-
vanna/Grass/Seasonal Woods (SGW), and 4) Mild-

WarmlHotlGrasslShrub (MGS). Figure l a shows these

four ecosystems over South America.

3. METHODOLOGY

The preprocessed AVHRR images are first classi-
fied into clear and cloudy regions using a new tech-

nique called the paired-histogram approach (Berendes
et aL, 1996) that is being developed as part of the

Clouds and the Earth's Radiant Energy (CERES) global

cloud masking program. Region labeling of fifteen

classes (water, land, smoke, sunglint, land etc.) is

performed manually and a total of 185 features (the
five calibrated AVHRR pixel values, channel differ-

ences, ratios, etc.) are calculated to develop an algo-

rithm that separates the various classes.
After the images are separated into one of fifteen

classes, the next step is to detect pixels with fires for

clear sky regions. There is a large body of literature
for fire detection schemes (for a review see Kaufman

and Justice 1994). Most of these methods use some
kind of a threshold to eliminate clouds. The paired-

histogram classifier offers a definite advantage by

eliminating clouds, sun-glint and water so further

processing of fire pixels over land can be performed.

In the present study, fire detection is performed using
a modified version of the Goddard algorithm (Kaufman

and Justice 1994). For cloud free pixels within a scan

angle of + 45 ° , a series of spectral and spatial tests

are performed to determine if a clear pixel has fire or
no fire. Selected images are then used to visually de-

termine if fires were accompanied by smoke plumes.
One of the classes that is identified by the paired-

histogram classifier is smoke. Approximately 38,888

smoke samples were manually selected that were

used as input to the algorithm. Preliminary results

from 18 images over South America show that

smoke pixels are classified with a 95% accuracy. The

remaining 5% of the smoke pixels where classified as
land. A number of selected images were also used to

visually inspect the accuracy of the smoke detection

algorithm. Once the smoke and clear sky pixels are
identified, the collocated ERBE pixel is used to de-

termine the TOA shortwave and Iongwave fluxes for

smoke and clear sky. Clear sky statistics are accumu-

lated for by ensuring that the entire grid box was

classified as clear land by the algorithm. However, it

is often difficult to obtain smoke samples that com-

pletely cover an ERBE footprint. Therefore an ERBE

pixel was classified as "smoky" if at least 50% of the
AVHRR pixels within an ERBE footprint was covered

with smoke.

4. RESULTS

In this paper only the August 1985 results for

South America are discussed. Figure l b shows a

0.5°X0.5 ° gridded map with pixels identified as fire.
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Thenumber of fires were accumulated for each day

for that entire month. Twenty-three images were

used to produce this figure. The fires are centered
around Rondonia, and Matto Grasso, in agreement

with previous studies (Tucker et al., 1984). Maximum

number of fire counts is about 500, shown by darker

shades of grey. Figure lc shows the frequency distri-

bution of fires for the four major ecosystems. During

August 1985, fires were predominantly in the tropical

broadleaf, savanna, and grass shrub ecosystems,

with 38% of fires occurring in the savanna. Less than
1% of the fires were found in the tropical rainforest

region for this month, which made the statistics unre-

liable for computing the aerosol radiative forcing.
In order to compute the instantaneous aerosol

radiative forcing, the following terms are defined:

1) SWARF = So (c{clr-a_,) , and 2) LWARF = (LWcl ,-

LW,=,), where SWARF is the shortwave aerosol forc-
ing in W/m2; LWARF is the Iongwave aerosol radiative

forcing in W/m2; c{ is broadband albedo; LW is the

Iongwave flux in W/m2; and the subscripts clr and aer

stand for clear and aerosol sky regions respectively.

The net radiative forcing (NETARF) is obtained by

adding the shortwave and Iongwave radiative forcing
terms. Note that the values defined in this way are

instantaneous and contain no spatial or temporal av-

eraging.

Figure ld shows the radiative forcing estimates
from August 1985. As mentioned before, the tropical

rain forest category did not have adequate samples to

compute the radiative forcing terms. For all three

ecosystems, the instantaneous shortwave radiative

forcing values are negative, which shows the reflec-
tive nature of the smoke. Maximum SWARF values of

-51.5 W/m 2 are found for the grassland ecosystem.

The LWARF vales are positive which shows that the

effective radiating temperature for the smoke is lower
than that of land. Maximum values are 17.9 W/m 2 are

found for the grassland ecosystem. Therefore, the net
radiative forcing values are negative which implies a

net "cooling" effect. The maximum net radiative

forcing values are for the TBS ecosystem . The in-

stantaneous NETARF values range from -33.6 to -
42.8 W/m 2 which are consistent with previous esti-

mates (Christopher et al., 1996). There appears to be
only a 9 W/m 2 change in the net radiative forcing val-

ues as a function of ecosystem.
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