6 research outputs found

    Prostate cancer small extracellular vesicles participate in androgen-independent transformation of prostate cancer by transferring let-7a-5p

    No full text
    Objectives: Androgen deprivation therapy (ADT) is a standard treatment for advanced prostate cancer (PCa). However, after 2–3 years ADT treatment, prostate cancer inevitably transits from androgen-dependent PCa (ADPC) to androgen-independent PCa (AIPC), which has a poor prognosis owing to its unclear mechanism and lack of effective therapeutic targets. Small extracellular vesicles (sEVs) play a vital role in the development of cancer. However, the role of PCa sEVs in the transformation of AIPC remains poorly understood. Materials and methods: Two different cell models were employed and compared. sEVs from ADPC cells (LNCaP) and AIPC cells (LNCaP-AI + F cells) were isolated and characterized. After co-culture of LNCaP-AI + F sEVs with LNCaP cells and of LNCaP sEVs with LNCaP-AI + F cells, androgen-independent transformation was determined respectively. Mechanically, small RNA sequencing was performed. Androgen-independent transformation was examined by the upregulation and downregulation of miRNA and downstream pathways were analyzed. Results: LNCaP-AI + F sEVs promoted the androgen-independent transformation of LNCaP cells. Interestingly, LNCaP sEVs exhibited a capacity to reverse the process.Let-7a-5p transfer was demonstrated. Furthermore, let-7a-5p overexpression promotes the androgen-independent transformation and let-7a-5p down-regulation reverses the process. Androgen receptor (AR) and PI3K/Akt pathways were identified and demonstrated by both let-7a-5p regulation and PCa sEVs coculture. Conclusions: PCa sEVs are intimately involved in the regulation of androgen-independent transformation of prostate cancer by transferring the key sEVs molecular let-7a-5p and then activating the AR and PI3K/Akt signaling pathways. Our results provide new perspectives for the development of sEVs and sEVs molecular targeted treatment approaches for AIPC patients

    <i>ZmLBD5</i> Increases Drought Sensitivity by Suppressing ROS Accumulation in Arabidopsis

    No full text
    Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors—particularly class-I members—play essential roles in plant development and biotic stress. However, little information is available on class-II LBD genes related to abiotic stress in maize. Here, we cloned a maize class-II LBD transcription factor, ZmLBD5, and identified its function in drought stress. Transient expression, transactivation, and dimerization assays demonstrated that ZmLBD5 was localized in the nucleus, without transactivation, and could form a homodimer or heterodimer. Promoter analysis demonstrated that multiple drought-stress-related and ABA response cis-acting elements are present in the promoter region of ZmLBD5. Overexpression of ZmLBD5 in Arabidopsis promotes plant growth under normal conditions, and suppresses drought tolerance under drought conditions. Furthermore, the overexpression of ZmLBD5 increased the water loss rate, stomatal number, and stomatal apertures. DAB and NBT staining demonstrated that the reactive oxygen species (ROS) decreased in ZmLBD5-overexpressed Arabidopsis. A physiological index assay also revealed that SOD and POD activities in ZmLBD5-overexpressed Arabidopsis were higher than those in wild-type Arabidopsis. These results revealed the role of ZmLBD5 in drought stress by regulating ROS levels

    Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps

    No full text
    Abstract: Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te-6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials. Weak interlayer van der Waals (vdW) bonding has significant impact on the structure and properties of vdW layered materials. Here authors use in-situ aberration-corrected ADF-STEM for an atomistic insight into the cation diffusion in the vdW gaps and the etching of vdW surfaces at high temperatures
    corecore