19 research outputs found

    Polymersome-Mediated Delivery of Combination Anticancer Therapy to Head and Neck Cancer Cells: 2D and 3D in Vitro Evaluation

    Get PDF
    Polymersomes have the potential to encapsulate and deliver chemotherapeutic drugs into tumor cells, reducing off-target toxicity that often compromises anticancer treatment. Here, we assess the ability of the pH-sensitive poly 2-(methacryloyloxy)ethyl phosphorylcholine (PMPC)- poly 2-(diisopropylamino)ethyl methacrylate (PDPA) polymersomes to encapsulate chemotherapeutic agents for effective combinational anticancer therapy. Polymersome uptake and ability to deliver encapsulated drugs into healthy normal oral cells and oral head and neck squamous cell carcinoma (HNSCC) cells was measured in two and three-dimensional culture systems. PMPC-PDPA polymersomes were more rapidly internalized by HNSCC cells compared to normal oral cells. Polymersome cellular uptake was found to be mediated by class B scavenger receptors. We also observed that these receptors are more highly expressed by cancer cells compared to normal oral cells, enabling polymersome-mediated targeting. Doxorubicin and paclitaxel were encapsulated into pH-sensitive PMPC-PDPA polymersomes with high efficiencies either in isolation or as a dual-load for both singular and combinational delivery. In monolayer culture, only a short exposure to drug-loaded polymersomes was required to elicit a strong cytotoxic effect. When delivered to three-dimensional tumor models, PMPC-PDPA polymersomes were able to penetrate deep into the center of the spheroid resulting in extensive cell damage when loaded with both singular and dual-loaded chemotherapeutics. PMPC-PDPA polymersomes offer a novel system for the effective delivery of chemotherapeutics for the treatment of HNSCC. Moreover, the preferential internalization of PMPC polymersomes by exploiting elevated scavenger receptor expression on cancer cells opens up the opportunity to target polymersomes to tumors

    The importance of obtaining a sputum sample and how it can aid diagnosis and treatment

    No full text
    Respiratory disease has a major impact on the NHS and continues to be a growing problem as each year passes. However, through improving diagnosis and management of respiratory disease the problem could be lessened. Taking a sputum sample is common practice within respiratory medicine especially for patients with chronic obstructive pulmonary disease (COPD) and helps to diagnose, confirm infection and offer correct treatment. It is important that the multidisciplinary team are aware of how to appropriately obtain sputum samples and when to request them. It is important as a respiratory health professional to understand the patient's usual sputum history including colour, amount and viscosity. Antibiotic stewardship aims to reduce antibiotic resistance through offering the most appropriate antibiotics for those with a bacterial infection and to discourage antibiotic prescribing for those that have not. This should result in better patient outcomes and lower healthcare costs

    Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20

    No full text
    Immunosafety analysis of pharmaceutical surfactants is an important step in understanding the complex mechanisms by which they induce side effects in susceptible patients. This paper provides experimental evidences that polyethoxylated surfactants, Cremophor-EL and Tween-80, also known as Polysorbate-80, activate the complement system in vitro, in normal human serum and plasma. They appeared to be more efficient reactogens than their structural homolog, Tween-20. Cremophor-EL and Tween-80 promoted the generation of biologically active complement products, C3a, C5a and C5b-9. Consistently, Paclitaxel and Taxotere (Docetaxel), pharmaceuticals formulated in Cremophor-EL and Tween-80, activated the complement system in similar extent. Moreover, comparison of serum reactivity against the drug-loaded and drug-free formulations exhibited a significant linear correlation. Taken together, these results are consistent with the hypothesis that therapeutic side effects, such as acute hypersensitivity and systemic immunostimulation, caused by intravenous nanomedicines containing polyethoxylated detergents such as Cremophor-EL and Tween-80, can be attributed to complement activation-derived inflammatory mediators
    corecore