1,754 research outputs found

    Perturbative calculation of improvement coefficients to O(g^2a) for bilinear quark operators in lattice QCD

    Get PDF
    We calculate the O(g^2 a) mixing coefficients of bilinear quark operators in lattice QCD using a standard perturbative evaluation of on-shell Green's functions. Our results for the plaquette gluon action are in agreement with those previously obtained with the Schr\"odinger functional method. The coefficients are also calculated for a class of improved gluon actions having six-link terms.Comment: 14 pages, REVTe

    Perturbative Renormalization Factors of Bilinear Quark Operators for Improved Gluon and Quark Actions in Lattice QCD

    Get PDF
    We calculate one-loop renormalization factors of bilinear quark operators for gluon action including six-link loops and O(a)O(a)-improved quark action in the limit of massless quark. We find that finite parts of one-loop coefficients of renormalization factors diminish monotonically as either of the coefficients c1c_1 or c2+c3c_2+c_3 of the six-link terms are decreased below zero. Detailed numerical results are given, for general values of the clover coefficient, for the tree-level improved gluon action in the Symanzik approach (c1=1/12,c2=c3=0)(c_1=-1/12, c_2=c_3=0) and for the choices suggested by Wilson (c1=0.252,c2=0,c3=0.17)(c_1=-0.252, c_2=0, c_3=-0.17) and by Iwasaki (c1=0.331,c2=c3=0(c_1=-0.331, c_2=c_3=0 and c1=0.27,c2+c3=0.04)c_1=-0.27, c_2+c_3=-0.04) from renormalization-group analyses. Compared with the case of the standard plaquette gluon action, finite parts of one-loop coefficients are reduced by 10--20% for the Symanzik action, and approximately by a factor two for the renormalization-group improved gluon actions.Comment: 19 pages, REVTeX, with 3 epsf figure

    Mesonic decay constants in lattice NRQCD

    Get PDF
    Lattice NRQCD with leading finite lattice spacing errors removed is used to calculate decay constants of mesons made up of heavy quarks. Quenched simulations are done with a tadpole improved gauge action containing plaquette and six-link rectangular terms. The tadpole factor is estimated using the Landau link. For each of the three values of the coupling constant considered, quarkonia are calculated for five masses spanning the range from charmonium through bottomonium, and one set of quark masses is tuned to the B(c). "Perturbative" and nonperturbative meson masses are compared. One-loop perturbative matching of lattice NRQCD with continuum QCD for the heavy-heavy vector and axial vector currents is performed. The data are consistent with the vector meson decay constants of quarkonia being proportional to the square root of their mass and the B(c) decay constant being equal to 420(13) MeV.Comment: 25 pages in REVTe

    Infinite Volume and Continuum Limits of the Landau-Gauge Gluon Propagator

    Get PDF
    We extend a previous improved action study of the Landau gauge gluon propagator, by using a variety of lattices with spacings from a=0.17a = 0.17 to 0.41 fm, to more fully explore finite volume and discretization effects. We also extend a previously used technique for minimizing lattice artifacts, the appropriate choice of momentum variable or ``kinematic correction'', by considering it more generally as a ``tree-level correction''. We demonstrate that by using tree-level correction, determined by the tree-level behavior of the action being considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings. This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propagator.Comment: 24 pages RevTex, 18 figures; Responses to referee comments, minor change

    The ACS Nearby Galaxy Survey Treasury. X. Quantifying the Star Cluster Formation Efficiency of Nearby Dwarf Galaxies

    Full text link
    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t_age < 100Myr) cluster sample. Our data provides the first constraints on two proposed relationships between the star formation rate of galaxies and the properties of their cluster systems in the low star formation rate regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data suggesting there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.Comment: 16 pages, 9 figures, Accepted to Ap

    Comparison Studies of Finite Momentum Correlators on Anisotropic and Isotropic Lattices

    Get PDF
    We study hadronic two- and three-point correlators relevant for heavy to light pseudoscalar meson semi-leptonic decays, using Symanzik improved glue, D234 light quark and NRQCD heavy quark actions. Detailed comparisons are made between simulations on anisotropic and isotropic lattices involving finite momentum hadrons. We find evidence that having an anisotropy helps in extracting better signals at higher momenta. Initial results for the form factors f_+(q^2) and f_0(q^2) are presented with tree-level matching of the lattice heavy-light currents.Comment: 43 pages with 50 postscript figure

    Heavy-light mesons with staggered light quarks

    Get PDF
    We demonstrate the viability of improved staggered light quarks in studies of heavy-light systems. Our method for constructing heavy-light operators exploits the close relation between naive and staggered fermions. The new approach is tested on quenched configurations using several staggered actionsn combined with nonrelativistic heavy quarks. The B_s meson kinetic mass, the hyperfine and 1P-1S splittings in B_s, and the decay constant f_{B_s} are calculated and compared to previous quenched lattice studies. An important technical detail, Bayesian curve-fitting, is discussed at length.Comment: 38 pages, figures included. v2: Entry in Table IX corrected and other minor changes, version appearing in Phys. Rev.

    Application of the operator product expansion to the short distance behavior of nuclear potentials

    Get PDF
    We investigate the short distance behavior of nucleon-nucleon (NN) potentials defined through Bethe-Salpeter wave functions, by perturbatively calculating anomalous dimensions of 6-quark operators in QCD. Thanks to the asymptotic freedom of QCD, 1-loop computations give certain exact results for the potentials in the zero distance limit. In particular the functional form of the S-state central NN potential at short distance rr is predicted to be a little weaker than r2r^{-2}. On the other hand, due to the intriguing character of the anomalous dimension spectrum, perturbative considerations alone can not determine whether this potential is repulsive or attractive at short distances. A crude estimation suggests that the force at short distance is repulsive, as found numerically in lattice QCD. A similar behavior is found for the tensor potential.Comment: 40 pages, no figure

    Improved Nonrelativistic QCD for Heavy Quark Physics

    Get PDF
    We construct an improved version of nonrelativistic QCD for use in lattice simulations of heavy quark physics, with the goal of reducing systematic errors from all sources to below 10\%. We develop power counting rules to assess the importance of the various operators in the action and compute all leading order corrections required by relativity and finite lattice spacing. We discuss radiative corrections to tree level coupling constants, presenting a procedure that effectively resums the largest such corrections to all orders in perturbation theory. Finally, we comment on the size of nonperturbative contributions to the coupling constants.Comment: 40 pages, 2 figures (not included), in LaTe

    Perturbative Thermodynamics of Lattice QCD with Chiral-Invariant Four-Fermion Interactions

    Get PDF
    Lattice QCD with additional chiral-invariant four-fermion interactions is studied at nonzero temperature. Staggered Kogut-Susskind quarks are used. The four-fermion interactions are implemented by introducing bosonic auxiliary fields. A mean field treatment of the auxiliary fields is used to calculate the model's asymptotic scale parameter and perturbative thermodynamics, including the one-loop gluonic contributions to the energy, entropy, and pressure. In this approach the calculations reduce to those of ordinary lattice QCD with massive quarks. Hence, the previous calculations of these quantities in lattice QCD using massless quarks are generalized to the massive case.Comment: 22 pages, RevTeX, 8 EPS figures, uses epsf.sty and feynmf.st
    corecore