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1. Introduction

In a recent paper [1] a proposal has been made to study nucleon–nucleon (NN) potentials
from a first principle QCD approach. In this field theoretic framework, potentials are
obtained through the Schrödinger operator applied to Bethe–Salpeter (BS) wave functions
defined by

ϕE(r⃗) = 〈0|N(x⃗ + r⃗, t)N(x⃗, t)|2N, E〉 , (1.1)

where |2N, E〉 is a QCD eigenstate with energy E (suppressing here other quantum num-
bers), and N is a nucleon interpolating operator made of 3 quarks such as N(x) =
ϵabcqa(x)qb(x)qc(x). Such wave functions have been measured through numerical simu-
lations of the lattice regularized theory [1, 2, 3, 4]. Although many conceptual ques-
tions remain to be resolved, the corresponding potentials indeed qualitatively resemble
phenomenological NN potentials which are widely used in nuclear physics. The force at
medium to long distance (r ≥ 2 fm) is shown to be attractive. This feature has long been
well understood in terms of pion and other heavier meson exchanges. At short distance,
a characteristic repulsive core is reproduced by the lattice QCD simulation [1]. No simple
theoretical explanation, however, exists so far for the origin of the repulsive core. For an
approach based on string theories, see ref. [5].

By writing

〈0|N(x⃗ + r⃗, t)N(x⃗, t) =
∞∑

n=0

∫
dE

2E
〈2N, nπ,E|fn(r⃗, E) , (1.2)

where |2N, nπ,E〉 is a state with the energy E containing two nucleons and n pions
(and/or nucleon-antinucleon pairs), we see that ϕE(r⃗) = f0(r⃗, E). (Our normalization
is 〈2N, nπ,E|2N, n′π,E′〉 = 2Eδnn′δ(E − E′).) We may thus interpret the wave function
ϕE(r⃗) as an amplitude to find the QCD eigenstate |2N, E〉 in N(x⃗ + r⃗, t)N(x⃗, t)|0〉.

The behaviors of the wave functions ϕE(r⃗) at short distances (r = |r⃗|) are encoded in
the operator product expansion (OPE) of N(x⃗ + r⃗, t)N(x⃗, t). An OPE analysis [6] of BS
wave functions in the case of a toy model, the Ising field theory in 2–dimensions, successfully
described the analytically known behavior. In this case the limiting short distance behavior
of the potential does not depend on the energy (rapidity) of the state, and further it only
mildly depends on energy (for low energies) at distances of the order of the Compton wave
length of the particles.

In this report we perform an operator product expansion (OPE) analysis of NN BS
wave functions in QCD, with the aim to theoretically better understand the repulsive core
of the NN potential, (at least that of the measured BS potential). Thanks to the property
of asymptotic freedom of QCD the form of the leading short distance behavior of the
coefficent functions can be computed using perturbation theory. A short summary of our
results has been published in ref. [7]1.

1Unfortunately the results for β01 and β10 as given in ref. [7] differ (incorrectly) from (1.4) by a factor

of 2.
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In sect. 2 we start with some general considerations on BS potentials, and sect. 3
presents some standard renormalization group considerations. The anomalous dimensions
of 3– and 6–quark operators are computed in sect. 4. Finally in sects. 5, 6 we discuss the
application of the results to NN potentials. In appendix C we make a similar analysis for
the I = 2 two pion system. For the convenience of the reader we give a brief summary of
our results here. The OPE analysis shows that the NN central potential at short distance
behaves as

V SI
c (r) ≅ CE

(− log r)βSI−1

r2
(1.3)

for the S–state (L = 0) , where S and I are total spin and isospin of the NN system,
respectively, and βSI is negative and explicitly obtained as

β01 = − 6
33 − 2Nf

, β10 = − 2
33 − 2Nf

, (1.4)

where Nf is the number of quark flavors, and the overall coefficient CE depends on the
energy E. Unfortunately the OPE analysis is not as conclusive as that in the toy model
referred to above, in particular the sign of CE is not determined by perturbative cosidera-
tions alone. The latter requires additional non-perturbative knowledge of matrix elements
of composite operators. A crude estimation using the non-relativistic quark model indi-
cates that CE is positive, which implies a repulsive core with a potential diverging a little
weaker than the generically expected r−2 at short distances.

2. Operator Product Expansion and potentials at short distance in 3 di-

mensions

In this section we discuss the application of the operator product expansion (OPE) to the
determination of the short distance behavior of the BS potential. We consider the equal
time Bethe–Salpeter (BS) wave function defined by

ϕE
AB(r⃗) = 〈0|OA(r⃗/2, 0)OB(−r⃗/2, 0)|E〉 , (2.1)

where |E〉 is an eigen-state of the system with energy E, and OA, OB are some operators
of the system. Here we suppress other quantum numbers of the state |E〉 for simplicity.
Using the OPE of OA and OB

OA(r⃗/2, 0)OB(−r⃗/2, 0) ≅
∑
C

DC
AB(r⃗)OC (⃗0, 0) , (2.2)

we have

ϕE
AB(r⃗) ≅

∑
C

DC
AB(r⃗)〈0|OC (⃗0, 0)|E〉 . (2.3)

Note that r⃗ dependence appears solely in DC
AB(r⃗) while the E dependence exists only in

〈0|OC (⃗0, 0)|E〉. As we will see, in the r = |r⃗| → 0 limit, the coefficient function behaves as

DC
AB(r⃗) ≅ rαC (− log r)βC fC(θ, φ) , (2.4)
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where θ, φ are angles in the polar coordinates of r⃗, so that

ϕE
AB(r⃗) ≅

∑
C

rαC (− log r)βCfC(θ, φ)DC(E) , DC(E) = 〈0|OC (⃗0, 0)|E〉 . (2.5)

We now assume that C has the largest contribution at small r:

αC < αC′ or (2.6)

αC = αC′ , βC > βC′ . (2.7)

for ∀C ′ ̸= C. The potential can be calculated from this wave function.
As will be seen later, αC = αC′ = 0 for the NN case in QCD. Furthermore states with

zero orbital angular momentum (L = 0) dominate in the OPE, so that the wave function
at short distance is given by

ϕE
AB(r) ≅

[
(− log r)βCDC(E) + (− log r)βC′DC′(E)

]
(2.8)

with βC > βC′ . Using

∇2(− log r)β = −β(− log r)β−1

[
1 − β − 1

− log r

]
r−2 , (2.9)

we obtain the following classification of the short distance behavior of the potential.

1. βC ̸= 0: The potential at short distance is energy independent and becomes

V (r) ≅ − βC

r2(− log r)
, (2.10)

which is attractive for βC > 0 and repulsive for βC < 0.

2. βC = 0: In this case we have

V (r) ≅ DC′(E)
DC(E)

(
−βC′

r2

)
(− log r)βC′−1 . (2.11)

The sign of the potential at short distance depends on −βC′DC′(E)/DC(E).

If there are two or more operators which have the largest contribution at short distance,
we have

ϕE
AB(x) = (− log r)βC (DC1(E) + DC2(E) + · · · ) . (2.12)

In this case, the above analysis can be applied just by replacing DC(E) → DC1(E) +
DC2(E) + · · · .

On the lattice, we do not expect divergences at r = 0 due to lattice artifacts at short
distance. The above classification holds at a ≪ r ≪ 1 fm, while the potential becomes
finite even at r = 0 on the lattice.
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3. Renormalization group analysis and operator product expansion

3.1 Renormalization group equation for composite operators

In QCD, using dimensional regularization in D = 4 − 2ϵ dimensions, bare local composite
operators O

(0)
A (x) are renormalized [8] according to2

O
(ren)
A (x) = ZAB(g, ϵ) O

(0)
B (x) . (3.1)

(Summation of repeated indices is assumed throughout this paper.) The meaning of the
above formula is that we obtain finite results if we insert the right hand side into any
correlation function, provided we also renormalize the bare QCD coupling g0 and the
quark and gluon fields. For example, in the case of an n–quark correlation function with
operator insertion, which we denote by G(0)

n;A(g0, ϵ) (suppressing the dependence on the
quark momenta and other quantum numbers) we have

G(ren)
n;A (g, µ) = ZAB(g, ϵ) Z

−n/2
F (g, ϵ)G(0)

n;B(g0, ϵ) . (3.2)

We recall from renormalization theory that for the analogous n–quark correlation function
(without any operator insertion) we have

G(ren)
n (g, µ) = Z

−n/2
F (g, ϵ)G(0)

n (g0, ϵ) , (3.3)

where the coupling renormalization is given by

g2
0 = µ2ϵ Z1(g, ϵ) g2 . (3.4)

The renormalization constant Z1 in the minimal subtraction (MS) scheme we are using has
pure pole terms only:

Z1(g, ϵ) = 1 − β0g
2

ϵ
− β1g

4

2ϵ
+

β2
0g4

ϵ2
+ O(g6) , (3.5)

where

β0 =
1

16π2

{
11
3

N − 2
3
Nf

}
, β1 =

1
256π4

{
34
3

N2 −
(

13
3

N − 1
N

)
Nf

}
. (3.6)

Similarly for the fermion field renormalization constant, we have

ZF (g, ϵ) = 1 − γF0g
2

2ϵ
+ O(g4) , (3.7)

where γF0 is given by (4.10). The gluon field renormalization constant is also similar, but
we do not need it here. Finally the matrix of operator renormalization constants is of the
form

ZAB(g, ϵ) = δAB −
γ

(1)
ABg2

2ϵ
+ O(g4) . (3.8)

2We note that we are considering the massless theory here since quark masses play no role in our analysis.
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The renormalization group (RG) expresses the simple fact that bare quantities are
independent of the renormalization scale µ. Introducing the RG differential operator

D = µ
∂

∂µ
+ β(g)

∂

∂g
(3.9)

the RG equation for n–quark correlation functions can be written as{
D +

n

2
γF (g)

}
G(ren)

n (g, µ) = 0 , (3.10)

where the RG beta function is

β(g) = ϵg + βD(g, ϵ) = ϵg − ϵg

1 + g
2

∂ ln Z1
∂g

= −β0g
3 − β1g

5 + O(g7) , (3.11)

where βD(g, ϵ) is the beta function in D dimensions and the RG gamma function (for quark
fields) is

γF (g) = βD(g, ϵ)
∂ lnZF

∂g
= γF0 g2 + O(g4) . (3.12)

It is useful to introduce the RG invariant lambda-parameter Λ by taking the Ansatz

Λ = µ ef(g) (3.13)

and requiring DΛ = 0. The solution is the lambda-parameter in the MS scheme (ΛMS) if
the arbitrary integration constant is fixed by requiring that for small coupling

f(g) = − 1
2β0g2

− β1

2β2
0

ln(β0g
2) + O(g2) . (3.14)

Finally the RG equations for n–quark correlation functions with operator insertion are of
the form {

D +
n

2
γF (g)

}
G(ren)

n;A (g, µ) − γAB(g)G(ren)
n;B (g, µ) = 0 , (3.15)

where

γAB(g) = −ZACβD(g, ϵ)
∂Z−1

CB

∂g
= γ

(1)
ABg2 + O(g4) . (3.16)

3.2 OPE and RG equations

Let us recall the operator product expansion (2.2)

O1(y/2)O2(−y/2) ≅ DB(y) OB(0) . (3.17)

We will need it in the special case where the operators O1, O2 on the left hand side are
nucleon operators and the set of operators OB on the right hand side are local 6–quark
operators of engineering dimension 9 and higher. All operators in (3.17) are renormalized
ones, but from now on we suppress the labels (ren). As we will see, the nucleon operators
are renormalized diagonally as

O1 = ζ1(g, ϵ) O
(0)
1 , O2 = ζ2(g, ϵ) O

(0)
2 , (3.18)
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and we can define the corresponding RG gamma functions by

γ1,2(g) = βD(g, ϵ)
∂ ln ζ1,2

∂g
= γ

(1)
1,2g2 + O(g4) . (3.19)

Next we write down the bare version of (3.17) (in terms of bare operators and bare
coefficient functions):

O
(0)
1 (y/2)O(0)

2 (−y/2) ≅ D
(0)
B (y) O

(0)
B (0) . (3.20)

Comparing (3.17) to (3.20), we can read off the renormalization of the coefficient functions:

DB(y) = ζ1(g, ϵ)ζ2(g, ϵ)D(0)
A (y) Z−1

AB(g, ϵ) (3.21)

and using the µ-independence of the bare coefficient functions we can derive the RG equa-
tions satisfied by the renormalized ones:

DDB(g, µ, y) + DA(g, µ, y) γ̃AB(g) = 0 , (3.22)

where the effective gamma function matrix is defined as

γ̃AB(g) = γAB(g) − [γ1(g) + γ2(g)] δAB . (3.23)

3.3 Perturbative solution of the RG equation and factorization of OPE

We want to solve the vector partial differential equation (3.22) and for this purpose it is
useful to introduce ÛAB(g), the solution of the matrix ordinary differential equation

β(g)
d
dg

ÛAB(g) = γ̃AC(g) ÛCB(g) (3.24)

and its matrix inverse UAB(g). We will assume that the coefficient functions are dimen-
sionless and have the perturbative expansion

DA(g, µ, y) = DA(g; µr) = DA;0 + g2DA;1(µr) + O(g4) , (3.25)

where r = |y|. For the case of operators with higher engineering dimension 9 + α the
coefficients are of the form rα times dimensionless functions and the analysis is completely
analogous and can be done independently, since in the massless theory operators of different
dimension do not mix. (In the full theory quark mass terms are also present, but they
correspond to higher powers in r and therefore can be neglected.)

We will also assume that the basis of operators has been chosen such that the 1-loop
mixing matrix is diagonal:

γ̃AB(g) = 2β0 βA g2 δAB + O(g4) . (3.26)

In such a basis the solution of (3.24) in perturbation theory takes the form

ÛAB(g) = {δAB + RAB(g)} g−2βB , (3.27)
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where RAB(g) = O(g2), with possible multiplicative log g2 factors, depending on the details
of the spectrum of 1-loop eigenvalues βA.

Having solved (3.24) we can write down the most general solution of (3.22):

DB(g;µr) = FA(Λr) UAB(g) . (3.28)

Here the vector FA is RG-invariant. Introducing the running coupling ḡ as the solution of
the equation

f(ḡ) = f(g) + ln(µr) = ln(Λr) (3.29)

FB can be rewritten as

FB(Λr) = DA(ḡ; 1) ÛAB(ḡ) . (3.30)

Since, because of asymptotic freedom (AF), for r → 0 also ḡ → 0 as

ḡ2 ≈ − 1
2β0 ln(Λr)

, (3.31)

FB can be calculated perturbatively using (3.25) and (3.27).
Putting everything together, we find that the right hand side of the operator product

expansion (3.17) can be rewritten:

O1(y/2)O2(−y/2) ≅ FB(Λr) ÕB(0) , (3.32)

where

ÕB = UBC(g) OC . (3.33)

There is a factorization of the operator product into perturbative and non-perturbative
quantities: FB(Λr) is perturbative and calculable (for r → 0) thanks to AF, whereas the
matrix elements of ÕB are non-perturbative (but r-independent).

An operator OB first occurring at ℓB-loop order on the right hand side of (3.17) and
corresponding to normalized 1-loop eigenvalue βB has coefficient FB(Λr) with leading short
distance behavior

FB(Λr) ≈ ḡ2(ℓB−βB) ≈ (−2β0 ln(Λr))βB−ℓB . (3.34)

In principle, an operator with very large βB, even if it is not present in the expansion
at tree level yet, might be important at short distances. This is why it is necessary to
calculate the full 1-loop spectrum of βB eigenvalues. As we shall see, no such operators
exist in our cases, and therefore operators with non-vanishing tree level coefficients are
dominating at short distances. The corresponding coefficient functions have leading short
distance behavior given by

FB(Λr) ≈ DB;0 (−2β0 ln(Λr))βB . (3.35)

A similar analysis in the case of operators of dimension 9 + α leads to the result (2.4).
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4. OPE and Anomalous dimensions for two nucleons

4.1 OPE of two nucleon operators at tree level

The general form of a gauge invariant local 3–quark operator is given by

BF
Γ (x) ≡ Bfgh

αβγ(x) = εabcqa,f
α (x)qb,g

β (x)qc,h
γ (x) , (4.1)

where α, β, γ are spinor, f, g, h are flavor, a, b, c are color indices of the (renormalized)
quark field q. The color index runs from 1 to N = 3, the spinor index from 1 to 4, and
the flavor index from 1 to Nf . Note that Bfgh

αβγ is symmetric under any interchange of pairs

of indices (e.g. Bfgh
αβγ = Bgfh

βαγ) because the quark fields anticommute. For simplicity we
sometimes use the notation such as F = fgh and Γ = αβγ as indicated in (4.1).

The nucleon operator is constructed from the above operators as

Bf
α(x) = (P+4)αα′ B

fgh
α′βγ(Cγ5)βγ(iτ2)gh , (4.2)

where P+4 = (1 + γ4)/2 is the projection to the large spinor component, C = γ2γ4 is the
charge conjugation matrix, and τ2 is the Pauli matrix in the flavor space (for Nf = 2)
given by (iτ2)fg = εfg. Both Cγ5 and iτ2 are anti-symmetric under the interchange of two
indices, so that the nucleon operator has spin 1/2 and isospin 1/2. Although the explicit
form of the γ matrices is unnecessary in principle, we find it convenient to use a (chiral)
convention given by

γk =

(
0 iσk

−iσk 0

)
, γ4 =

(
0 1
1 0

)
, γ5 = γ1γ2γ3γ4 =

(
1 0
0 −1

)
. (4.3)

As discussed in the previous section, the OPE at the tree level (generically) dominates
at short distance. The OPE of two nucleon operators given above at tree level becomes

Bf
α(x + y/2)Bg

β(x − y/2) = Bf
α(x)Bg

β(x) +
yµ

2

{
∂µ[Bf

α(x)]Bg
β(x) − Bf

α(x)∂µ[Bg
β(x)]

}
+

yµyν

8

{
∂µ∂ν [Bf

α(x)Bg
β(x)] − 4∂µBf

α(x)∂νB
g
β(x)

}
+ · · · .(4.4)

For the two-nucleon operator with either the combination [αβ], {fg} (S = 0) or the com-
bination {αβ}, [fg] (S = 1), terms odd in y vanish in the above OPE, so that only
even L contributions appear. These 6–quark operators are anti-symmetric under the ex-
change (α, f) ↔ (β, g). On the other hand, for two other operators with ([αβ], [fg]) or
({αβ}, {fg}), which are symmetric under the exchange, terms even in y vanish in the OPE
and only odd L’s contribute.

Knowing the anomalous dimensions of the 6–quark operators appearing in the OPE,
which will be calculated later in this section, the OPE at short distance (r = |y⃗| ≪ 1,
y4 = 0) becomes

Bf
α(x + y/2)Bg

β(x − y/2) ≅
∑
A

cA(r)Ofg,A
αβ (x) +

∑
B

dB(r)ykylOfg,B
αβ,kl(x)

+
∑
C

eC(r)ykOfg,C
αβ,k (x) + · · · , (4.5)
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where the coefficient functions behave as

cA(r) ≅ (− log r)βA , dB(r) ≅ (− log r)βB , eC(r) ≅ (− log r)βC , (4.6)

and βA,B,C are related to the anomalous dimensions of the 6–quark operators Ofg,A
αβ , of

those with two derivatives Ofg,B
αβ,kl and of those with one derivative Ofg,C

αβ,k .
The wave function defined through the eigenstate |E〉 is given by

ϕeven
E (y) = 〈0|Bf

α(x + y/2)Bg
β(x − y/2)|E〉

≅
∑
A

cA(r)〈0|Ofg,A
αβ (x)|E〉 +

∑
B

dB(r)ykyl〈0|Ofg,B
αβ,kl(x)|E〉 + O(y4) , (4.7)

for the anti-symmetric states, while

ϕodd
E (y) = 〈0|Bf

α(x + y/2)Bg
β(x − y/2)|E〉 ≅

∑
C

eC(r)yk〈0|Ofg,C
αβ,k (x)|E〉 + O(y3) (4.8)

for the symmetric states.
In this paper, we consider only 6–quark operators without derivatives and calculate

the corresponding anomalous dimensions.

4.2 General formula for the divergent part at 1-loop

Following the previous section, we define the renormalization factor ZX of a k–quark op-
erator X = [qk] through the relation

[qk]ren = ZX [qk
0 ] = ZXZ

k/2
F [qk] , (4.9)

where q0(q) is the bare (renormalized) quark field. The wave function renormalization
factor for the quark field is given at 1-loop by

ZF = 1 + g2Z
(1)
F , Z

(1)
F = − λCF

16π2ϵ
(4.10)

where λ is the gauge parameter and CF = N2−1
2N .

At 1-loop the renormalization of simple k–quark operators (those involving no gauge
fields) is given by the divergent parts of diagrams involving exchange of a gluon between
any pair of quark fields. The result of this by now standard computation is[

qa,f
α (x)qb,g

β (x)
]1−loop,div

=
g2

32Nπ2

1
ϵ

[
(T0 + λT1) · qa(x) ⊗ qb(x)

]fg

α,β
(4.11)

where bold–faced symbols represent matrices in flavor and spinor space

(T0)
ff1,gg1

αα1,ββ1
= −1

4

∑
µν

{
σµν ⊗ σµν + Nσµν⊗̃σµν

}ff1,gg1

αα1,ββ1
, (4.12)

(T1)
ff1,gg1

αα1,ββ1
=

{
1 ⊗ 1 + N1⊗̃1

}ff1,gg1

αα1,ββ1
. (4.13)
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Here σµν = i
2 [γµ, γν ], and we have used the notation

{X ⊗ Y}ff1,gg1

αα1,ββ1
= Xff1

αα1
Ygg1

ββ1
{X⊗̃Y}ff1,gg1

αα1,ββ1
= Xgf1

βα1
Yfg1

αβ1
, (4.14)

{σµν}fg
αβ = δfg(σµν)αβ , {1}fg

αβ = δfgδαβ . (4.15)

Using the Fierz identity for spinor indices

−1
4

∑
µν

σµν ⊗ σµν = PR ⊗ PR + PL ⊗ PL − 2(PR⊗̃PR + PL⊗̃PL) , (4.16)

and the one with ⊗ ↔ ⊗̃, where PR, PL are the chiral projectors

PR =
1
2
(1 + γ5) , PL =

1
2
(1 − γ5) , (4.17)

we can simplify T0 as

(T0)
ff1,gg1

αα1,ββ1
= δff1δgg1 [δαα1δββ1 − 2δβα1δαβ1 ] + Nδgf1δfg1 [δβα1δαβ1 − 2δαα1δββ1 ]

(4.18)

where either α1, β1 ∈ {1, 2}(right-handed) or α1, β1 ∈ {3, 4}(left-handed) due to the chiral
projections in eq. (4.16). In our following calculation of the 1-loop anomalous dimensions,
eq. (4.11) together with eqs. (4.18) and (4.13) are the key equations.

4.3 Renormalization of local 3–quark operators at 1-loop

In this subsection we calculate the anomalous dimensions of general 3–quark operators at
1-loop. In terms of the renormalization factor defined as

Brenor.
3 = ζ[q3

0] = ζZ
3/2
F [q3], ζ = 1 + g2(ζ(1) + ζ

(1)
λ ) + . . . , (4.19)

where ζ(1) ( ζ
(1)
λ ) is the λ–independent (dependent) part at 1-loop, the divergent part of

the insertion of the 3–quark operator BF
Γ = Bfgh

αβγ defined in (4.1) at 1-loop is given by a
linear combination of insertion of baryon operators, and (with a slight abuse of notation)
we express this as

(Γ(1)div)F
Γ = −g2

(
ζ(1) + ζ

(1)
λ +

3
2
Z

(1)
F

)FF ′

ΓΓ′
BF ′

Γ′ . (4.20)

The λ–dependent contribution from T1 in (4.13) is diagonal and given by

g2(Γ(1)div
λ )F

Γ = 3λ
g2

32π2

N + 1
Nϵ

BF
Γ , (4.21)

so that the λ–dependent part of ζ vanishes:

ζ
(1)
λ = − 3λ

32π2

N + 1
Nϵ

− 3
2
Z

(1)
F =

λ

64Nπ2

3(N + 1)(N − 3)
ϵ

= 0 , (N = 3) . (4.22)

Therefore ζ is λ–independent, as expected from the gauge invariance. We remark that we
leave N explicit in some formulae to help keep track of the origin of the various terms, but
in our case we should always set N = 3 at the end.

– 11 –



The λ–independent part of Γ(1) from T0 in (4.18) leads to (N = 3):

(Γ(1)div)fgh
αβγ =

(N + 1)
2N

g2

16π2ϵ

[
3Bfgh

αβγ − 2Bfgh
βαγ − 2Bfgh

γβα − 2Bfgh
αγβ

]
, (4.23)

(Γ(1)div)fgh
αβγ̂ =

(N + 1)
2N

g2

16π2ϵ

[
Bfgh

αβγ̂ − 2Bfgh
βαγ̂

]
, (4.24)

where α, β, γ ∈ {1, 2} (right-handed), while γ̂ ∈ {1̂ = 3, 2̂ = 4} (left-handed). Note that
the same results hold with hatted and unhatted indices exchanged.

These relations can be easily diagonalized and the combinations which do not mix are
given by

(ζ(1))fgh
{ααβ} = (ζ(1))fgh

{α̂α̂β̂}
= 12

d

ϵ
, (4.25)

(ζ(1))f ̸=gh
[αβ]α = (ζ(1))f ̸=gh

[α̂β̂]α̂
= −12

d

ϵ
, (4.26)

(ζ(1))fgh
{αβ}γ̂ = (ζ(1))fgh

{α̂β̂}γ
= 4

d

ϵ
, (4.27)

(ζ(1))f ̸=gh
[αβ]γ̂ = (ζ(1))f ̸=gh

[α̂β̂]γ
= −12

d

ϵ
, (4.28)

where d is given by

d ≡ 1
32Nπ2

=
1

96π2
. (4.29)

The square bracket denotes antisymmetrization [αβ] = αβ − βα, and curly bracket means
{αβ} = αβ + βα, {ααβ} = ααβ + αβα + βαα. The totally symmetric case corresponds to
the decuplet representation (for Nf = 3) and contains the Nf = 2 , I = 3/2 representation.
The antisymmetric case corresponds to the octet representation (for Nf = 3) and contains
the Nf = 2 , I = 1/2 representation.

The anomalous dimension at 1-loop is easily obtained from

γ = g2γ(1) + O(g4) = βD(g, ϵ)
∂ ln ζ

∂g
= −2ζ(1)g2ϵ + O(g4) . (4.30)

Therefore we have (
γ(1)

)fgh

{ααβ}
=

(
γ(1)

)fgh

{α̂α̂β̂}
= −24d , (4.31)(

γ(1)
)f ̸=gh

[αβ]α
=

(
γ(1)

)f ̸=gh

[α̂β̂]α̂
= 24d , (4.32)(

γ(1)
)fgh

{αβ}γ̂
=

(
γ(1)

)fgh

{α̂β̂}γ
= −8d , (4.33)(

γ(1)
)f ̸=gh

[αβ]γ̂
=

(
γ(1)

)f ̸=gh

[α̂β̂]γ
= 24d , (4.34)

in agreement with the results of Peskin [9].
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4.4 Anomalous dimensions of 6–quark operators at 1-loop

In this subsection we consider the renormalization of arbitrary local gauge invariant 6–
quark operator of (lowest) dimension 9. Any such operator can be written as a linear
combination of operators

OC(x) = BF1,F2

Γ1,Γ2
(x) ≡ BF1

Γ1
(x)BF2

Γ2
(x) = OA(x)OB(x) , (4.35)

with A = (Γ1, F1) and B = (Γ2, F2). Note OA(x) and/or OB(x) may not be operators with
proton or nucleon quantum numbers and separately may not be diagonally renormalizable
at one loop. The reason for considering the renormalization in more generality is that
in principle there may be operators in this class which occur in the OPE of two nucleon
operators at higher order in PT, but are relevant in the analysis because of their potentially
large anomalous dimensions.

4.4.1 Linear relations between 6–quark operators

According to the considerations in subsect. 4.2 the operators in eq. (4.35) mix only with
operators OC′ = OA′OB′ which preserve the set of flavors and Dirac indices in the chiral
basis i.e.

F1 ∪ F2 = F ′
1 ∪ F ′

2 , Γ1 ∪ Γ2 = Γ′
1 ∪ Γ′

2 .

Note however that such operators are not all linearly independent. Relations between them
follow from a general identity satisfied by the totally antisymmetric epsilon symbol which
for N labels reads

Nεa1...aN εb1...bN =
∑
j,k

εa1...aj−1bkaj+1...aN εb1...bk−1ajbk+1...bN . (4.36)

For our special case, N = 3, this identity implies the following identities among the 6–quark
operators

3BF1,F2

Γ1,Γ2
+

3∑
i,j=1

B
(F1F2)[i,j]
(Γ1,Γ2)[i,j] = 0 , (4.37)

where i-th index of abc and j-th index of def are interchanged in (abc, def)[i, j]. For
example, (Γ1, Γ2)[1, 1] = α2β1γ1, α1β2γ2 or (Γ1, Γ2)[2, 1] = α1α2γ1, β1β2γ2. Note that the
interchange of indices occurs simultaneously for both Γ1, Γ2 and F1, F2 in the above formula.
The plus sign in (4.37) appears because the quark fields are Grassmann.

An immediate consequence of the identity is that the divergent part of the λ–dependent
contributions, calculated from T1 in (4.11), must vanish, after the summation over the 9
different contributions from quark pairs on the different baryonic parts A,B is taken. The
λ–dependent part of the contribution of quark contractions on the same baryonic parts
is compensated by the quark field renormalization. Thus the renormalization of the bare
6–quark operator is λ–independent as expected from gauge invariance.
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As an example of identities, we consider the case that Γ1, Γ2 = ααβ, αββ (α ̸= β and
F1, F2 = ffg, ffg (f ̸= g), the constraint gives

3Bffg,ffg
ααβ,αββ + (3 − 2)Bffg,ffg

ααβ,αββ + Bfff,fgg
ααα,βββ + (2 − 1)Bfgg,fff

αββ,ααβ

= 4Bffg,ffg
ααβ,αββ + Bfff,fgg

ααα,βββ + Bfgg,fff
αββ,ααβ = 0 , (4.38)

where minus signs in the first line come from the property that BF2,F1

Γ2,Γ1
= −BF1,F2

Γ1,Γ2
. There

are no further relations among 6–quark operators beyond (4.37).

4.4.2 Divergent parts at 1-loop

We thus need only to calculate the contributions from T0, which can be classified into the
following 4 different combinations for a pair of two indices:(

f
α

)(
f
α

)
⇒ −(N + 1)

(
f
α

)(
f
α

)
, (4.39)(

f
α

)(
f
β

)
⇒ (1 − 2N)

(
f
α

)(
f
β

)
+ (N − 2)

(
f
β

)(
f
α

)
, (4.40)(

f1
α

)(
f2
α

)
⇒ −

(
f1
α

)(
f2
α

)
− N

(
f2
α

) (
f1
α

)
, (4.41)(

f1
α

)(
f2

β

)
⇒

{(
f1
α

) (
f2

β

)
− 2

(
f1

β

) (
f2
α

)}
+ N

{(
f2

β

)(
f1
α

)
− 2

(
f2
α

)(
f1

β

)}
, (4.42)

where f ̸= g and α ̸= β ∈ (1, 2) (Right) or ∈ (3, 4) (Left).
The computation can be made according to the following steps:
i.) Select the total flavor content e.g. 3f + 3g or 4f + 2g (f ̸= g). These are the only

cases we will consider since in this paper we are mainly restricting attention to baryon
operators with Nf = 2, but the approach is also applicable to more general cases (Nf > 2).

ii.) Given a flavor content classify all the possible sets of Dirac labels in the chiral
basis e.g. 111223, 112234, ... It is obvious from the rules above that some have equivalent
renormalization at 1-loop e.g. 111223 and 112223 with 1 ↔ 2, and also those with hatted
and unhatted indices exchanged e.g. 111223 and 133344.

iii.) For given flavor and Dirac sets generate all possible operators 3. Then generate all
gauge identities between them and determine a maximally independent (basis) set {Si}.

iv.) Compute the divergent parts of the members of the independent basis:

Γdiv
i =

1
2ϵ

γijSj . (4.43)

v.) Finally compute the eigenvalues and corresponding eigenvectors of γT to determine
the operators which renormalize diagonally at 1-loop.

An example of the procedure is given in Appendix A. Some of the steps are quite
tedious if carried out by hand. e.g. in the case 3f + 3g and Dirac indices 112234 there
are initially 68 operators in step iii. with 38 independent gauge identities, and hence an
independent basis of 30 operators. However all the steps above can be easily implemented
in an algebraic computer program using MATHEMATICA or MAPLE.

3recall the single baryon operators are symmetric under exchange of pairs of indices
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If the quarks f, g belong to an iso-doublet e.g. we identify f with u having I3 = 1/2 and
g with d (I3 = −1/3), then if an eigenvalue is non-degenerate the corresponding eigenvector
belongs to a certain representation of the isospin group. If the eigenvalue is degenerate
then linear combinations of them belong to definite representations. For the 3f + 3g case
they can have I = 0, 1, 2, 3. Eigenvectors with I = 0, 2 are odd under the interchange
f ↔ g and those with I = 1, 3 are even. The operators in the case 4f + 2g have I3 = 1
and hence have I = 1, 2, 3. The eigenvectors in this case can be obtained from those of the
3f + 3g case by applying the isospin raising operator.

The complete list of eigenvalues and possible isospins are given in Tables 2-4 in Ap-
pendix A. Here we summarize the most important results.

1) For the 3f + 3g (and 4f + 2g) cases all eigenvalues γj ≤ 48d = 2γN , where γN is
the 1-loop anomalous dimension of the nucleon (3–quark) operator. We have not found an
elegant way of proving this other than computing all cases explicitly.

2) It is easy to construct eigenvectors with eigenvalue 2γN e.g. operators of the form
Bffg

α[β,α]B
ggf

α̂[β̂,α̂]
since there is no contribution from diagrams where the gluon line joins quarks

in the different baryonic parts.
3) Operators with higher isospin generally have smaller eigenvalues.

4.4.3 Decomposition of two-nucleon operators

Since

Cγ5 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (4.44)

in the chiral representation, the nucleon operator is written as

Bf
α = Bffg

α+α̂,[2,1] + Bffg

α+α̂,[2̂,1̂]
(4.45)

where α = 1, 2, α̂ = α + 2, and f ̸= g. This has anomalous dimension γN = 24d.
We then consider two independent 6–quark operators occurring in the OPE at tree

level which decomposed as follows. The spin-singlet (S = 0) and isospin-triplet (I = 1)
operator is decomposed as

Bffg

α+α̂,[β,α]+[β̂,α̂]
Bffg

β+β̂,[β,α]+[β̂,α̂]
= B01

I + B01
II + B01

III + B01
IV + B01

V + B01
V I (4.46)

where

B01
I = Bffg

α[β,α]B
ffg
β[β,α] + Bffg

α̂[β̂,α̂]
Bffg

β̂[β̂,α̂]
, (4.47)

B01
II = Bffg

α[β,α]B
ffg

β[β̂,α̂]
+ Bffg

α[β̂,α̂]
Bffg

β[β,α] + Bffg

α̂[β̂,α̂]
Bffg

β̂[β,α]
+ Bffg

α̂[β,α]B
ffg

β̂[β̂,α̂]
, (4.48)

B01
III = Bffg

α[β,α]B
ffg

β̂[β,α]
+ Bffg

α̂[β,α]B
ffg
β[β,α] + Bffg

α̂[β̂,α̂]
Bffg

β[β̂,α̂]
+ Bffg

α[β̂,α̂]
Bffg

β̂[β̂,α̂]
, (4.49)

B01
IV = Bffg

α[β̂,α̂]
Bffg

β[β̂,α̂]
+ Bffg

α̂[β,α]B
ffg

β̂[β,α]
, (4.50)

B01
V = Bffg

α[β̂,α̂]
Bffg

β̂[β,α]
+ Bffg

α̂[β,α]B
ffg

β[β̂,α̂]
, (4.51)

B01
V I = Bffg

α[β,α]B
ffg

β̂[β̂,α̂]
+ Bffg

α̂[β̂,α̂]
Bffg

β[β,α] , (4.52)
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and α ̸= β. In the above we do not have to calculate all contributions. Some of them are
obtained from interchanges under (1, 2) ↔ (3, 4) or (1, 3) ↔ (2, 4).

Similarly the spin-triplet (S = 1) and isospin-singlet (I = 0) operator is decomposed
as

Bffg

α+α̂,[β,α]+[β̂,α̂]
Bggf

α+α̂,[β,α]+[β̂,α̂]
= B10

I + B10
II + B10

III + B10
IV + B10

V + B10
V I , (4.53)

where

B10
I = Bffg

α[β,α]B
ggf
α[β,α] + Bffg

α̂[β̂,α̂]
Bggf

α̂[β̂,α̂]
, (4.54)

B10
II = Bffg

α[β,α]B
ggf

α[β̂,α̂]
+ Bffg

α[β̂,α̂]
Bggf

α[β,α] + Bffg

α̂[β̂,α̂]
Bggf

α̂[β,α] + Bffg
α̂[β,α]B

ggf

α̂[β̂,α̂]
, (4.55)

B10
III = Bffg

α[β,α]B
ggf
α̂[β,α] + Bffg

α̂[β,α]B
ggf
α[β,α] + Bffg

α̂[β̂,α̂]
Bggf

α[β̂,α̂]
+ Bffg

α[β̂,α̂]
Bggf

α̂[β̂,α̂]
, (4.56)

B10
IV = Bffg

α[β̂,α̂]
Bggf

α[β̂,α̂]
+ Bffg

α̂[β,α]B
ggf
α̂[β,α] , (4.57)

B10
V = Bffg

α[β̂,α̂]
Bggf

α̂[β,α] + Bffg
α̂[β,α]B

ggf

α[β̂,α̂]
, (4.58)

B10
V I = Bffg

α[β,α]B
ggf

α̂[β̂,α̂]
+ Bffg

α̂[β̂,α̂]
Bggf

α[β,α] . (4.59)

Again a half of the above 1-loop contributions can be obtained from others by the inter-
change (1, 2) ↔ (3, 4) or f → g.

4.4.4 Results for anomalous dimensions

It is very important to note here that operators BSI
V I for both cases (SI = 01 and 10) have

the maximal anomalous dimension at 1-loop, since as noted in point 2) above, no 1-loop
correction from T0 joining quarks from the two baryonic components exists for BF1,F2

αβγ,α̂′β̂′γ̂′

type of operators. Therefore we always have some operators with βA = 0 which dominate
in the OPE at short distance.

The 1-loop corrections Γ(1) to 6–quark operators BSI are computed in appendix A and
are summarized as:(

Γ01
I

)(1) = −12
d

ϵ
B01

I ,
(
Γ01

II

)(1) = 12
d

ϵ
B01

II ,
(
Γ01

III

)(1) = 0 ,(
Γ01

IV

)(1) = 0 ,
(
Γ01

V

)(1) = 6
d

ϵ
B01

V + 6
d

ϵ
B01

V I ,
(
Γ01

V I

)(1) = 24
d

ϵ
B01

V I , (4.60)

for SI = 01. The last two results can be written as(
Γ01

V ′
)(1) = 6

d

ϵ
B01

V ′ ,
(
Γ01

V I′
)(1) = 24

d

ϵ
B01

V I′ , , (4.61)

where

B01
V ′ = B01

V − 1
3
B01

V I , B01
V I′ = B01

V I . (4.62)

Similarly we have for SI = 10(
Γ10

I

)(1) = −4
d

ϵ
B10

I ,
(
Γ10

II

)(1) = 20
d

ϵ
B10

II ,
(
Γ10

III

)(1) = 0 ,(
Γ10

IV

)(1) = 8
d

ϵ
B10

IV ,
(
Γ10

V ′
)(1) = 6

d

ϵ
B10

V ′ ,
(
Γ10

V I′
)(1) = 24

d

ϵ
B10

V I′ , (4.63)
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Table 1: The value of γSI (defined in (4.72)) for each eigen operator in the SI = 01 and SI = 10
states.

I II III IV V ′ V I ′

γ01 −36 −12 −24 −24 −18 0
γ10 −28 −4 −24 −16 −18 0

where

B10
V ′ = B10

V − 1
3
B10

V I , B10
V I′ = B10

V I . (4.64)

Denoting the eigenvalues of the anomalous dimension matrix by γC , we give the values
of γSI defined by

γC − 2γN = 2dγSI , (4.65)

in table 1 (N = 3), which shows, in both cases, that the largest value is zero while others
are all negative. The case 2 in sect. 2 is realized: βC = 0 and

βC′ = β01
0 = − 6

33 − 2Nf
for S = 0 , I = 1 , (4.66)

βC′ = β10
0 = − 2

33 − 2Nf
for S = 1 , I = 0 . (4.67)

5. Short distance behavior of the nucleon potential

We consider the following structure of the potential.

V (y⃗) = V0(r) + Vσ(r)(σ⃗1 · σ⃗2) + VT (r)S12 + O(∇) (5.1)

where r = |y⃗|, and

S12 = 3(σ⃗1 · ˆ⃗y)(σ⃗2 · ˆ⃗y) − (σ⃗1 · σ⃗2), ˆ⃗y =
y⃗

|y⃗|
(5.2)

is the tensor operator. Here σ⃗i acts on the spin labels of the ith nucleon.
Since, as shown in the previous section, 6–quark operators appeared at tree level in

the OPE of NN which have the largest and the second largest anomalous dimensions, we
mainly consider 6–quark operators at tree level in the OPE, which is written as

Bf
α(x + y/2)Bg

β(x − y/2) ≅ cV IB
fg
V I,αβ(x) + cII(− log r)βSI

0 Bfg
II,αβ(x) + · · · (5.3)

where cV I and cII are some constants, and · · · represents other contributions, which are
less singular than the first two at short distance. (We here write the spinor and flavor
indices α, β and f, g explicitly for later use.) The anomalous dimensions βSI

0 are given in
(4.66) and (4.67).
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5.1 Potential for S = 0 and I = 1 states

In the case that S = 0 and I = 1, we take α ̸= β and f = g in eq.(5.3), whose leading
contributions couple only to the J = L = 0 state, which is given by

|E〉 = |Lz = 0, Sz = 0, Iz = 1〉L=0,S=0,I=1 = |0, 0, 1〉0,0,1 . (5.4)

The relevant matrix elements are given by

cV I〈0|Bfg
V I,αβ |0, 0, 1〉0,0,0 = A0

V IY
0
0 [αβ]{fg}1, (5.5)

cII〈0|Bfg
II,αβ |0, 0, 1〉0,0,0 = A0

IIY
0
0 [αβ]{fg}1, (5.6)

where A0
II and A0

V I are non-perturbative constants, Y Lz
L is a spherical harmonic function,

[αβ] = (δα1δβ2−δβ1δα2)/
√

2 represents the (S, Sz) = (0, 0) component, and {fg}1 = δf1δg1

corresponds to isospin (I, Iz) = (1, 1). With the notation that φ(1S0, Jz = 0)IIz=11 =
Y 0

0 [αβ]{fg}1, the wave function at short distance is dominated by

ϕ
1S0
E (y) = 〈0|Bf

α(x + y/2)Bg
β(x − y/2)|0, 0, 1〉0,0,1

≅
(
A0

V I + A0
II(− log r)β01

0

)
φ(1S0, 0)11 + · · · (5.7)

from which we obtain

∇2

2m
ϕ

1S0
E (y) ≅ (− log r)β01

0 −1

r2

−β01
0 A0

II

mN
φ(1S0, 0)11 + · · · (5.8)

where m = mN/2 is the reduced mass of the two nucleon system.
Since S12 is zero on φ(1S0, 0)11, we have

V 01
c (r)ϕ

1S0
E (y) ≅ (− log r)β01

0 −1

r2

−β01
0 A0

II

mN
φ(1S0, 0)11 + · · · (5.9)

where V 01
c (r) = V0(r) − 3Vσ(r). We therefore obtain

V 01
c (r) ≅ F 01(r)

A0
II

A0
V I

. (5.10)

where

FSI(r) =
−βSI

0 (− log r)βSI
0 −1

mNr2
. (5.11)

The potential diverges as F 01(r) in the r → 0 limit, which is a little weaker than r−2.

5.2 Potential for S = 1 and I = 0

We here consider the spin-triplet and isospin-singlet state(S = 1 and I = 0). Since I = 0
and Iz = 0 in this case, we drop indices I and Iz unless necessary. In this case, the leading
contributions in eq.(5.3) couple only to the J = 1 state, which is given by

|E〉 = |3S1, Jz = 1〉 + x|3D1, Jz = 1〉 , (5.12)
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where

|3S1, Jz = 1〉 = |Lz = 0, Sz = 1〉L=0,S=1 , (5.13)

|3D1, Jz = 1〉 =
1√
10

[
|0, 1〉 −

√
3|1, 0〉 +

√
6|2,−1〉

]
L=2,S=1

, (5.14)

x is the mixing coefficient, which is determined by QCD dynamics, and 2S+1LJ specifies
quantum numbers of the state.

Relevant matrix elements are given by

ci

〈
0

∣∣∣Bfg
i,αβ

∣∣∣ 3S1, 1
〉

= B0
i φ

(
3S1

)
, ci

〈
0

∣∣∣Bfg
i,αβ

∣∣∣ 3D1, 1
〉

= 0 , (5.15)

for i = II and V I, where B0
i are non-perturbative constants, and

φ
(
3S1

)
= Y 0

0 (θ, φ){αβ}1[fg] , (5.16)

with {αβ}1 = δα1δβ1.
Using the above results, we have

ϕJ=1
E (y) ≅

{
B0

V I + (− log r)β10
0 B0

II

}
φ

(
3S1

)
, (5.17)

By applying ∇2 we obtain

∇2

2m
ϕJ=1

E (y) ≅ −β10

mN

(− log r)β10
0 −1

r2
B0

IIφ
(
3S1

)
, (5.18)

while

V (y)ϕJ=1
E (y) ≅ B0

V IV
10
c (r)φ

(
3S1

)
+ 2

√
2VT (r)B0

V Iφ
(
3D1

)
, (5.19)

where we use the formula in the appendix B, V 10
c (r) = V 0

0 (r) + V 0
σ (r), and

φ
(
3D1

)
=

1√
10

[
Y 0

2 {αβ}1 −
√

3Y 1
2 {αβ}0 +

√
6Y 2

2 {αβ}−1

]
[fg] , (5.20)

with {αβ}−1 = δα2δβ2 and {αβ}0 = (δα1δβ2 + δβ1δα2)/
√

2.
By comparing eq.(5.18) with eq.(5.19), we have

V 10
c (r) ≅ F 10(r)

B0
II

B0
V I

, VT (r) ≅ 0 . (5.21)

This shows that the central potential V 10
c (r) diverges as F 10(r) in the r → 0 limit, which

is a little weaker than 1/r2, while the tensor potential VT (r) becomes zero in this limit at
the tree level in the OPE.
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5.3 Higher order in the OPE and the tensor potential

While the short distance behavior of the central potential is determined by the OPE at the
tree level, the determination of the tensor potential at short distance requires the OPE at
higher order, whose relevant contribution is given by

Bf
α(x + y/2)Bg

β(x − y/2) ≅ cV IB
fg
V I,αβ(x) + cII(− log r)βSI

0 Bfg
II,αβ(x)

+ cT (− log r)βSI
T

[ykyl]
r2

Bfg,kl
T,αβ (x) + · · · · · · (5.22)

where [ykyl] = ykyl − r2δkl/3, and we assume that the third term with the tensor-type
operator Bfg,kl

T,αβ appears first at ℓSI
T (> 0) loop of the perturbative expansion in the OPE.

Therefore, with this assumption, we have

βSI
T = −ℓSI

T +
∆SI

T − 24
2(33 − 2Nf )

(5.23)

where ∆SI
T = γT /(2d) with γT being the anomalous dimension of the operator Bfg,kl

T,αβ . The
calculation of anomalous dimensions for all 6–quark operators in the previous section shows
that ∆T ≤ 24, so that βSI

T < βSI
0 < 0.

An extra matrix element we need is given as

x cT
[ykyl]

r2

〈
0

∣∣∣Bfg,kl
T,αβ

∣∣∣ 3D1, 1
〉

= BT φ
(
3D1

)
, (5.24)

where BT is a further non-perturbative constant.
Using the above results, we have for (S, I) = (1, 0)

ϕJ=1
E (y) ≅

{
B0

V I + (− log r)β10
0 B0

II

}
φ

(
3S1

)
+ (− log r)β10

T BT φ
(
3D1

)
. (5.25)

By applying ∇2 we obtain

∇2

2m
ϕJ=1

E (y) ≅ −β10
0

mN

(− log r)β10
0 −1

r2
B0

IIφ
(
3S1

)
+

−6
mN

(− log r)β10
T

r2
BT φ

(
3D1

)
. (5.26)

From V (y)ϕJ=1
E (y) = (E + ∇2/(2m))ϕJ=1

E (y), we obtain

V 10
c (r) ≅ F 10(r)

B0
II

B0
V I

, (5.27)

VT (r) ≅ F 10
T (r)

−3BT√
2B0

V I

, (5.28)

where

F 10
T (r) =

(− log r)β10
T

mNr2
. (5.29)

This shows that the central potential Vc(r) diverges as F 10(r) in the r → 0 limit, which is
a little weaker than 1/r2, while the tensor potential VT (r) diverges as F 10

T (r) in this limit,
which is not stronger than F 10(r) since β10

0 − 1 ≥ β10
T .
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6. Evaluation of matrix elements

We rewrite 3–quark operators in terms of left- and right- handed component:

Bf
X,α = Bfgh

αβγ(Cγ5PX)βγ(iτ2)gh , (6.1)

Bf
XY,α = (PX)αβBf

Y,β , (6.2)

for X,Y = R or L. In terms of these we have

Bf
αBg

β = [BI + BII + BIII + BIV + BV + BV I ]
fg
αβ , (6.3)

where

(BI)
fg
αβ = [BRRBRR + BLLBLL]fg

αβ , (6.4)

(BII)
fg
αβ = [BRRBRL + BRLBRR + BLLBLR + BLRBLL]fg

αβ , (6.5)

(BIII)
fg
αβ = [BRRBLR + BLRBRR + BLLBRL + BRLBLL]fg

αβ , (6.6)

(BIV )fg
αβ = [BRLBRL + BLRBLR]fg

αβ , (6.7)

(BV )fg
αβ = [BRLBLR + BLRBRL]fg

αβ , (6.8)

(BV I)
fg
αβ = [BRRBLL + BLLBRR]fg

αβ . (6.9)

Note that we take (x⃗, t) = (⃗0, 0) in the above operators. We need to know

〈0|(Bi)
fg
αβ |2N,E〉 (6.10)

for i = II, V I.
For f ̸= g, Lorentz covariance leads to

〈0|Bf
XBg

Y |2N, E〉 =
∑

A,B=R,L

CAB
XY (s)PAu(p⃗, σ1)PBu(−p⃗, σ2), (6.11)

where s = E2 = 4(p⃗2 + m2
N ) with the total energy E in the center of mass frame, σi

(i = 1, 2) is the spin of the i-th nucleon, and CAB
XY is an unknown function of s. Using

invariance of QCD under the parity transformation PBXP−1 = γ4BX̄ where R̄ = L and
L̄ = R, we rewrite eq.(6.11) as

(6.11) = 〈0|PBf
XBg

Y P−1P |2N, E〉 =
∑
A.B

CAB
X̄Ȳ PĀγ4u(−p⃗, σ1)PB̄γ4u(p⃗, σ2)

=
∑
A,B

CĀB̄
X̄Ȳ PAu(p⃗, σ1)PBu(−p⃗, σ2), (6.12)

where γ4u(−p⃗, σ1) = u(p⃗, σ1) is used. The above relation implies CĀB̄
X̄Ȳ

= CAB
XY . Using this

property for the unknown functions CAB
XY , we have

〈0|(BII)
fg±gf
αβ |2N, E〉 = CRR,±

RL+LR{(PR ⊗ PR + PL ⊗ PL)u(p⃗, σ1)u(−p⃗, σ2)}αβ∓βα(6.13)
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and

〈0|(BV I)
fg±gf
αβ |2N, E〉 = CRL,±

RL {(PR ⊗ PL + PL ⊗ PR)u(p⃗, σ1)u(−p⃗, σ2)}αβ∓βα.(6.14)

Taking p⃗ = (0, 0, pz > 0) and Dirac representation for γ matrices [10], we have

u(±p⃗,+) =
1√

EN + mN


EN + mN

0
∓pz

0

 u(±p⃗,−) =
1√

EN + mN


0

EN + mN

0
±pz

(6.15)

where EN =
√

p⃗2 + m2
N . For I = 1 ( fg + gf) and S = 0 (σ1 = + and σ2 = − ) the above

explicit form for the spinors gives

{(PR ⊗ PR + PL ⊗ PL)u(p⃗, +)u(−p⃗,−)}12−21 = EN , (6.16)

{(PR ⊗ PL + PL ⊗ PR)u(p⃗, +)u(−p⃗,−)}12−21 = mN , (6.17)

while, for I = 0 ( fg − gf) and S = 1 (σ1 = + and σ2 = + ), we have

{(PR ⊗ PR + PL ⊗ PL)u(p⃗,+)u(−p⃗,+)}11 = mN , (6.18)

{(PR ⊗ PL + PL ⊗ PR)u(p⃗,+)u(−p⃗,+)}11 = EN . (6.19)

We finally obtain

〈0|(BII)
fg+gf
12 |2N, E〉

〈0|(BV I)
fg+gf
12 |2N, E〉

=
EN

mN

CRR,+
RL+LR(s)

CRL,+
RL (s)

(6.20)

for fg + gf and (σ1, σ2) = (+,−) ( 1S0 ), and

〈0|(BII)
fg−fg
11 |2N, E〉

〈0|(BV I)
fg−fg
11 |2N, E〉

=
mN

EN

CRR,−
RL+LR(s)

CRL,−
RL (s)

(6.21)

for fg − gf and (σ1, σ2) = (+, +) ( 3S1 ), where s = 4E2
N .

Unfortunately, we can not determine the sign of the ratio for these matrix elements. As
a very crude estimation, we consider the non-relativistic expansion for constituent quarks
whose mass mQ is given by mQ = mN/3. In the large mQ limit, γ4q0 = q0 and γ4u0 = u0,
where a subscript 0 for q and u means the 0-th order in the non-relativistic expansion.
In this limit, it is easy to show CAB

XY = C for all X,Y,A,B, so that CRR
RL+LR = 2C and

CRL
RL = C. Furthermore the first order correction to CAB

XY = C vanishes in the expansion.
Therefore in the leading order of the non-relativistic expansion, we have

〈0|(BII)
fg+gf
12 |2N, E〉

〈0|(BV I)
fg+gf
12 |2N, E〉

≅ 2 + O

(
p⃗2

m2
Q

)
(6.22)

for (σ1, σ2) = (+,−) ( 1S0 ), and

〈0|(BII)
fg−fg
11 |2N, E〉

〈0|(BV I)
fg−fg
11 |2N, E〉

≅ 2 + O

(
p⃗2

m2
Q

)
(6.23)

for (σ1, σ2) = (+, +) ( 3S1 ). For both cases the ratio is positive, which gives repulsion at
short distance i.e. the repulsive core.
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7. Conclusions and discussion

The OPE analysis leads to conclusion that the S–state potential at short distance behaves
as in (1.3) with (1.4). However perturbative considerations alone can not tell the crucial
sign of the overall coefficient CE . Moreover we found that the latter was also not directly
predicted by chiral PT . A crude estimation using non-relativistic quarks suggests that CE

is positive, hence predicting a repulsive core, which diverges a little weaker than r−2 at
small r. The leading corrections involve small powers of logs and hence it could happen
that the dominant asymptotic behavior appears only at extremely short distances.

Our analysis suggests that the repulsion of the NN potential at short distance is related
to the difference of anomalous dimensions between a 6–quark operator and two 3–quark
operators at 1-loop, and to the structure of the composite operators which probe the NN
states. The explicit 1–loop calculation indicates that a combination of fermi statistics
for quarks and the particular structure of the one gluon exchange interaction determines
the sign and size of the β’s. The appearance of zero effective gamma eigenvalues is simply
explained by chiral symmetry, however we were unable to find a simple proof of the absence
of positive eigenvalues established by explicit calculation.

At higher order in the perturbative expansion, tensor operators appear in the OPE.
Using this fact, we also found that the tensor potential also diverges a little weaker than
r−2 as r → 0.

There are several interesting extensions of the analysis using the OPE. An application
to the 3–flavor case may reveal the nature of the repulsive core in the baryon-baryon
potentials. Since quark masses can be neglected in our OPE analysis, the calculation
can be done in the exact SU(3) symmetric limit. It is also interesting to investigate the
existence or the absence of the repulsive core in the 3–body nucleon potential. Such an
investigation would require the calculation of anomalous dimensions of 9–quark operators
at 2–loop level. Certainly more precise evaluations (also involving numerical simulations)
of matrix elements 〈0|OX |E〉 will also be needed to theoretically predict the nature of the
core of the NN potential.
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A. Explicit calculations of the divergent part for 6–quark operators at

1-loop

In this appendix we illustrate the computation of the divergent parts for 6–quark operators
following the mechanical (if rather inelegant) procedure outlined in subsect. 4.4.2, for the
case of the S = 0, I = 1 operator B01

I defined in (4.47).

– 23 –



We first list all possible operators corresponding to the Dirac labels 111222 in Table 2
(in the 4f2g case). In this case there are 11 operators:

B1 = Bffg
ααβBffg

αββ , B2 = Bffg
αβαBffg

ββα, B3 = Bffg
αβαBffg

αββ , B4 = Bffg
ααβBffg

ββα,

B5 = Bffg
αααBffg

βββ , B6 = Bfff
ααβBfgg

αββ , B7 = Bfff
ααβBfgg

βαβ , B8 = Bfff
αααBfgg

βββ ,

B9 = Bfff
βββBfgg

ααα, B10 = Bfff
αββBfgg

ααβ , B11 = Bfff
αββBfgg

βαα . (A.1)

In terms of these we write

Bffg
α[βα]B

ffg
β[β,α] = B1 + B2 − B3 − B4 . (A.2)

We next determine their linear relations from the constraints (4.37), and conclude that in
this case there are just 4 independent operators which we can chose as B1,2,3,4:

B5 = B4 − 4B3, B6 = B1, B7 = 2B3 − B4, B8 = −3B1

B9 = 3B2, B10 = B4 − 2B3, B11 = −B2 . (A.3)

Next we compute the divergent parts using (4.18), initially keeping N explicit in the for-
mulae to indicate from which part of (4.18) the terms originate. The 1-loop corrections
Γ(1) to B1,2,3,4 are given by:

Γ(1)
1 = (5 − 9N)B1 − 4NB3 − 2(N + 1)B4 − 2B5 + N(−3B6 − 2B7 + B8 + 4B10),

Γ(1)
2 = (5 − 9N)B2 − 4NB3 − 2(N + 1)B4 − 2B5 + N(2B10 + 3B11 − 4B7 − B9) ,

Γ(1)
3 = (1 − 11N)B3 − 2N(B1 + B2) + (2 − N)(B4 − B5) + 2N(B10 + B11 − B6 − B7) ,

Γ(1)
4 = (3 − 8N)B4 − 4(N + 1)(B1 + B2) + 4(2 − N)B3 + (N − 2)B5 + 2N(B10 − B7) ,

(A.4)

where an overall factor d/ϵ is dropped on the rhs for simplicity. Finally we set N = 3 and
use the gauge identities eq. (A.3) to express the result in terms of linearly independent
operators;

Γ(1)
i =

1
2ϵ

γijBj , (A.5)

with the matrix γ given by

γ/(2d) =


−40 0 −40 8
0 −40 −40 8

−12 −12 −60 12
−16 −16 −32 −8

 . (A.6)

So we obtain

Γ(1)
1+2−3−4 = −12

d

ϵ
B1+2−3−4 . (A.7)

For Bffg

α̂[β̂,α̂]
Bffg

β̂[β̂,α̂]
, the result can be obtained from the above by the interchange of α and

α̂. In terms of B̃i = Bi(α ↔ α̂), we have(
Γ01

I

)(1) ≡
[
(B + B̃)1+2−3−4

]1−loop,div
= −12

d

ϵ
(B + B̃)1+2−3−4 . (A.8)
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This corresponds to the result for the first I = 1 operator for the entry 111222 in Table 2.
The other eigenvalues of γ are obtained similarly.

The renormalization of the other operators defined in (4.48-4.59) can be treated simi-
larly thereby obtaining the results in (4.60-4.64).

Dirac indices γj/(2d) I

111111 −24 0

111112 −24 0, 1

111122 −4 0

−24 0, 1

−40 2

111222 −4 0

−12 1

−24 0, 1

−40 2

−72 3

111113 −16 0, 1

111123 −6 0, 1

−16 0, 1

−24 1, 2

Table 2: Eigenvalues γj of the anomalous dimension matrix γ and isospins of the corresponding eigenvec-

tors for the case 3f3g.
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Dirac indices γj/(2d) I

111223 0 0, 1

−6 0, 1

−16 0, 1

−18 1, 2

−24 1, 2

−48 2, 3

111133 −4 0

−16 0, 1, 2

111134 0 1

−4 0

−12 1

−16 0, 1, 2

111233 4 1

−4 0

−8 0, 1, 1

−16 0, 1, 2

−32 1, 2, 3

111234 20 0

8 1

4 1

0 1

−4 0

−8 0, 1, 1, 2

−12 1

−16 0, 0, 0, 1, 1, 2, 2, 2

−32 1, 2, 3

112233 8 0

4 1

−4 0, 0, 1, 2

−8 0, 1, 1, 2

−16 0, 1, 2

−28 2

−30 1, 2, 3

Table 3: As in Table 2 (continued).
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Dirac indices γj/(2d) I

112234 20 0

12 1

8 0, 1

4 1

0 1, 1

−4 0, 0, 1, 2

−8 0, 1, 1, 2

−12 1

−16 0, 0, 1, 1, 2, 2, 2

−28 2

−32 1, 2, 3

−36 1, 2, 3

111333 −6 0, 1

−24 0, 1, 2, 3

111334 0 0, 1, 1, 2

−6 0, 1

−18 1, 2

−24 0, 1, 2, 3

112334 24 0, 1

6 0, 1

0 0, 0, 1, 1, 1, 1, 2, 2

−6 0, 1

−12 1, 1, 2, 2

−18 1, 1, 2, 2

−24 0, 1, 2, 3

−30 0, 1, 2, 3

Table 4: As in Table 2 (continued).
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B. Some useful formulae for angular momentum states

B.1 Eigenstates

At given J , there are 2 distinct states, the spin-singlet (S = 0) state and the spin-triplet
(S = 1) state.

The singlet state is denoted as 1JJ , since it has S = 0 and J = L. The fact that
I + L + S must be odd to satisfy fermion anti-symmetry gives I = 0 for odd J and I = 1
for even J . The eigenstate with Jz can be easily obtained as

|1JJ , Jz〉 = |Jz, 0〉J,S=0 , (B.1)

where |Jz, Sz〉J,S = |Jz〉J ⊗ |Sz〉S .
The spin-triplet state is classified into 3 types: 3JJ , 3(J ± 1)J . For the first one, I = 0

(even J) or I = 1 (odd J), and vice versa for the other two types. By the Wigner-Eckart
theorem, the matrix elements of the five operators do not depend on Jz. Therefore it is
enough to know eigenstates with Jz = J only. Explicitly we have

|3JJ , J〉 =
1√

J + 1

{
|J − 1, 1〉J,1 −

√
J |J, 0〉J,1

}
, (B.2)

|3(J − 1)J , J〉 = |J − 1, 1〉J−1,1 , (B.3)

|3(J + 1)J , J〉 =
1√

(J + 1)(2J + 3)

{
|J − 1, 1〉J+1,1

+
√

2J + 1
[√

(J + 1)|J + 1,−1〉J+1,1 − |J, 0〉J+1,1

]}
. (B.4)

B.2 Evaluation of each operator

Using these eigenstates, it is easy to see

σ⃗1 · σ⃗2 = 2S(S + 1) − 3 = −3, 1, 1, 1 , (B.5)

L⃗ · S⃗ =
J(J + 1) − L(L + 1) − S(S + 1)

2
= 0, −1, J − 1, −(J + 2) , (B.6)

for 1JJ , 3JJ , 3(J − 1)J and 3(J + 1)J , respectively.
For S12 defined in (5.2) the results are more complicated due to the mixing between

3(J − 1)J and 3(J + 1)J . After a little algebra we obtain,

S12 = 0, 2,


−2(J − 1)

2J + 1
,

6
√

J(J + 1)
2J + 1

6
√

J(J + 1)
2J + 1

, −2(J + 2)
2J + 1

 . (B.7)

C. The I = 2 2-pion system

Here we consider the operator product expansion of two iso-vector pseudoscalar densities
in QCD.
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C.1 Anomalous dimensions

The local composite operators with π+π+ quantum numbers in QCD with lowest dimension
are 4–quark operators with dimension 6. There are 5 independent such (bare) scalar
operators

O1 = d̄γµu · d̄γµu + d̄γµγ5u · d̄γµγ5u , (C.1)

O2 = d̄u · d̄u − d̄γ5u · d̄γ5u , (C.2)

O3 = d̄γµu · d̄γµu − d̄γµγ5u · d̄γµγ5u , (C.3)

O4 = d̄u · d̄u + d̄γ5u · d̄γ5u , (C.4)

O5 = d̄σµνu · d̄σµνu , (C.5)

where in this appendix we use the notation u = qu, d = qd and suppress explicit color and
Dirac indices of the quark fields.

There are also 3 independent such (bare) traceless tensors operators

Tµν
1 = d̄γµu · d̄γνu + d̄γµγ5u · d̄γνγ5u − 1

D
gµνO1 , (C.6)

Tµν
2 = d̄γµu · d̄γνu − d̄γµγ5u · d̄γνγ5u − 1

D
gµνO3 , (C.7)

Tµν
3 = d̄σµτu · d̄σν

τu − 1
D

gµνO5 . (C.8)

As in the main text, operators are renormalized according to the formula

O(R)
A = OA − g2

32π2ϵ
γABOB + . . . , (C.9)

and similarly for tensor fields. The results for the one–loop anomalous dimensions of the
scalar fields were first computed in refs. [11, 12, 13]4. The non-vanishing entries of the
mixing matrix for the scalar case are

γ11 = −4 , (C.10)

γ22 = 16 , (C.11)

γ33 = −2 , γ32 = −12 , (C.12)

γ44 = 10 , γ45 = 1/3 , (C.13)

γ54 = −20 , γ55 = −34/3 . (C.14)

We have extended the analysis to the tensor case 5 ; here we find

γ
(T )
11 = −8/3 , (C.15)

γ
(T )
22 = 2/3 , γ

(T )
23 = −2 , (C.16)

γ
(T )
33 = −16/3 . (C.17)

4See also [14], where the 1-loop anomalous dimension matrix was calculated for the most general flavor-

conserving scalar 4-quark operators in the case of three quark flavors.
5we are unaware of any previous literature considering this case
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It is useful to introduce the (one-loop) diagonally renormalized operators. For the scalar
case we have

X
(R)
A = XA − g2

32π2ϵ
γ̂AXA + . . . , (C.18)

where

X1 = O1 , γ̂1 = −4 , (C.19)

X2 = O2 , γ̂2 = 16 , (C.20)

X3 = O3 +
2
3
O2 , γ̂3 = −2 , (C.21)

X4 = O4 + BO5 , γ̂4 = (
√

964 − 2)/3 , (C.22)

X5 = O5 + CO4 , γ̂5 = −(
√

964 + 2)/3 . (C.23)

Here

B =
16 −

√
241

30
= 0.01586 , C = 32 −

√
964 = 0.95165 . (C.24)

C.2 OPE for I = 2 π-π scattering

The OPE for two π fields can be written in QCD as

π(x)π(0) =
∑
α

γα(x)Bα + · · · (C.25)

Here π(x) is the field annihilating π+, Bα are the renormalized doubly charged dimen-
sion 6 operators discussed in the previous section, x is spacelike (and for simplicity we
assume its time component vanishes) and γα(x) are c-number coefficient functions. [Here
we “pretend” all operators are scalar, although in fact three of them are symmetric trace-
less tensors. Taking into account their tensor structure however does not change any of
our conclusions here.] The dots stand for higher dimensional operators with less singular
coefficient functions.

The short distance asymptotics of the I = 2 wave function is given by

Ψ(x) = 〈0|π(x)π(0)|2〉 ∼
∑
α

γα(x)Bα + · · · (C.26)

where
Bα = 〈0|Bα|2〉 (C.27)

are the (energy dependent) matrix elements of the local operators.
In QCD we can write the divergence of the axial current as

∂µAµ = ∂µ
(
d̄γµγ5u

)
= m0Φ0 = mRΦR , (C.28)

where
Φ0(x) = d̄(x)γ5u(x) (C.29)

is a (bare) quark bilinear field with π+ quantum numbers and the quark mass parameter m0

is the sum of the u and d quark masses. [Here we used the fact that the axial current, being
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partially conserved, has renormalization constant Z = 1. There is a subtlety in dimensional
regularization where because of the presence of γ5 the renormalization constant is not equal
to unity. It is finite nevertheless and this does not alter our conclusions at the 1-loop level.]
The (canonically normalized) pion field is defined as

π(x) =
1

m2
πfπ

∂µAµ(x) = ΩΦR(x) , (C.30)

where Ω is a constant:
Ω =

mR

m2
πfπ

. (C.31)

From this we see that the field ΦR renormalizes with the inverse of the mass renormalization
constant.

The RG analysis of the pion-pion wave function goes along the same lines as in the main
text for the nucleon–nucleon case. By inspecting the spectrum of anomalous dimensions
we see that, again, only operators already present in the tree level expansion

(d̄γ5u)2 = −1
2
O2 +

1
2
O4 = −1

2
X2 +

1
2(1 − BC)

[X4 − BX5] (C.32)

contribute to the leading short distance part of the wave function and even from this set
we need only the operators with the largest anomalous dimensions. Since the coefficient of
such an operator X

(R)
A is asymptotically proportional to

(− ln r)
1

2b0
(γ̂A+d0)

, (C.33)

where b0 = 11 − 2Nf/3 and d0 = −16 comes from the mass renormalization.
Numerically the spectrum of γ̂As is

〈−4; 16;−2; 9.68;−11.02;−16
3

;−8
3
;
2
3
〉 , (C.34)

corresponding to the spectrum of powers

〈−1.11; 0;−1;−0.35;−1.50;−1.19;−1.04;−0.85〉 (C.35)

numerically. (Here we took Nf = 3 for simplicity.)
We have, again, a leading zero eigenvalue and all the other powers are subleading. The

next one is −0.35 so the wave function is asymptotically

Ψ(x) ∼ ψ0 + ψ1ℓ
−b + · · · , (C.36)

where b = 0.35. This corresponds to

V (r) ∼ ψ1

ψ0

b

r2ℓ(1+b)
. (C.37)

Here

ψ0 = −Ω2

2
〈0|O(R)

2 |2〉 (C.38)
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and ψ1 is proportional to (with a positive coefficient) the linear combination

〈0|O(R)
4 |2〉 + B〈0|O(R)

5 |2〉 . (C.39)

Note that the ratio ψ1/ψ0 may be energy dependent. We need to calculate this ratio (or
at least its sign) nonperturbatively, to be able to determine whether the potential in this
channel is attractive or repulsive. ChPT is not applicable for this problem since there
are too many extra low energy constants characterizing the matrix elements of 4–quark
operators and in the end the sign of this ratio is left undetermined. In the absence of a
reliable non-perturbative method to calculate the above matrix elements we try to estimate
them by inserting a complete set of states in the middle of the operator and truncating the
sum after the 1-particle contribution. This is very similar in spirit to the vacuum insertion
method [15], (oft rightly criticized) however surprisingly successfully applied to ∆S = 2
weak matrix elements in the past. In this approximation

〈0|(d̄Γ1u) · (d̄Γ2u)|2〉 ≈ 〈0|(d̄Γ1u)|1〉〈1|(d̄Γ2u)|2〉 (C.40)

and therefore we have (in this approximation)

〈0|O(R)
4 |2〉 ≈ −〈0|O(R)

2 |2〉 (C.41)

and
〈0|O(R)

5 |2〉 ≈ 0 . (C.42)

Thus the ratio ψ1/ψ0 is positive in this naive approximation and the potential is repulsive,
as indicated by the (quenched) lattice measurements [16].
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