229 research outputs found

    Galactic Effects on Habitability

    Full text link
    The galactic environment has been suspected to influence planetary habitability in many ways. Very metal-poor regions of the Galaxy, or those largely devoid of atoms more massive than H and He, are thought to be unable to form habitable planets. Moreover, if such planets do form, the young system is subjected to close stellar passages while it resides in its stellar birth cluster. Various potential hazards remain after clusters disperse. For instance, central galactic regions may present risks to habitability via nearby supernovae, gamma ray bursts (GRBs), and frequent comet showers. In addition, planets residing within very wide binary star systems are affected by the Galaxy, as local gravitational perturbations from the Galaxy can increase the binary's eccentricity until it destabilizes the planets it hosts. Here we review the most recent work on the main galactic influences over planetary habitability. Although there must be some metallicity limit below which rocky planets cannot form, recent exoplanet surveys show that they form around stars with a very large range of metallicities. Once formed, the probability of star clusters destabilizing planetary systems only becomes high for rare, extremely long-lived clusters. Regarding threats to habitability from supernovae, GRBs, and comet showers, many recent studies suggest that their hazards are more limited than originally thought. Finally, denser regions of the Galaxy enhance the threat that very wide binary companions pose to planetary habitability, but the probability that a very wide binary star disrupts habitability will always be substantially below 100% for any environment. While some Milky Way regions must be more hospitable to habitable planets than others, it is difficult to state that habitable planets are confined to any well-defined region of the Galaxy or that any other particular region of the Galaxy is uninhabitable.Comment: Invited review chapter, accepted for publication in the "Handbook of Exoplanets"; 19 pages; 2 figure

    DMSO and Betaine Greatly Improve Amplification of GC-Rich Constructs in De Novo Synthesis

    Get PDF
    In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and their non-coding elements, we explored the use of DMSO and betaine in two conventional methods of assembly and amplification. For this study, we compared the polymerase (PCA) and ligase-based (LCR) methods for construction of two GC-rich gene fragments implicated in tumorigenesis, IGF2R and BRAF. Though we found no benefit in employing either DMSO or betaine during the assembly steps, both additives greatly improved target product specificity and yield during PCR amplification. Of the methods tested, LCR assembly proved far superior to PCA, generating a much more stable template to amplify from. We further report that DMSO and betaine are highly compatible with all other reaction components of gene synthesis and do not require any additional protocol modifications. Furthermore, we believe either additive will allow for the production of a wide variety of GC-rich gene constructs without the need for expensive and time-consuming sample extraction and purification prior to downstream application

    Modafinil modulation of the default mode network

    Get PDF
    RationaleThe default mode network (DMN) is a functional network which is implicated in a range of cognitive processes. This network is proposed to consist of hubs located in the ventromedial prefrontal cortex (vmPFC), posterior cingulate/retrosplenial cortex (PCC/rSpl), and inferior parietal lobule (IPL), with other midline cortical and temporal lobe nodes connected to these hubs. How this network is modulated by neurochemical systems during functional brain activity is not yet understood.ObjectivesIn the present study, we used the norepinephrine/dopamine transporter inhibitor modafinil to test the hypothesis that this drug modulates the DMN.MethodsEighteen healthy right-handed adults participated in a double-blind, placebo-controlled study of single oral dose modafinil 200 mg. They performed a simple visual sensorimotor task during slow event-related fMRI. Drug effects were interrogated within the DMN defined by task-induced deactivation (TID) on placebo.ResultsThere was a trend toward faster reaction time (RT) on modafinil (Cohen's d = 0.38). Brain regions within the DMN which exhibited significant modafinil-induced augmentation of TID included vmPFC, PCC/rSpl, and left IPL. Across subjects, the modafinil effect on TID in the vmPFC was significantly and specifically associated with drug effects on RT speeding.ConclusionsModafinil augments TID in the DMN to facilitate sensorimotor processing speed, an effect which may be particularly dependent on changes in vmPFC activity. This is consistent with the gain control function of catecholamine systems and may represent an important aspect of the pro-cognitive effects of modafinil

    Dissecting the determinants of depressive disorders outcome: an in depth analysis of two clinical cases

    Get PDF
    Clinicians face everyday the complexity of depression. Available pharmacotherapies and psychotherapies improve patients suffering in a large part of subjects, however up to half of patients do not respond to treatment. Clinicians may forecast to a good extent if a given patient will respond or not, based on a number of data and sensations that emerge from face to face assessment. Conversely, clinical predictors of non response emerging from literature are largely unsatisfactory. Here we try to fill this gap, suggesting a comprehensive assessment of patients that may overcome the limitation of standardized assessments and detecting the factors that plausibly contribute to so marked differences in depressive disorders outcome. For this aim we present and discuss two clinical cases. Mr. A was an industrial manager who came to psychiatric evaluation with a severe depressive episode. His employment was demanding and the depressive episode undermined his capacity to manage it. Based on standardized assessment, Mr. A condition appeared severe and potentially dramatic. Mrs. B was a housewife who came to psychiatric evaluation with a moderate depressive episode. Literature predictors would suggest Mrs. B state as associated with a more favourable outcome. However the clinician impression was not converging with the standardized assessment and in fact the outcome will reverse the prediction based on the initial formal standard evaluation. Although the present report is based on two clinical cases and no generalizability is possible, a more detailed analysis of personality, temperament, defense mechanisms, self esteem, intelligence and social adjustment may allow to formalize the clinical impressions used by clinicians for biologic and pharmacologic studies

    Dual use of Medicare and the Veterans Health Administration: are there adverse health outcomes?

    Get PDF
    BACKGROUND: Millions of veterans are eligible to use the Veterans Health Administration (VHA) and Medicare because of their military service and age. This article examines whether an indirect measure of dual use based on inpatient services is associated with increased mortality risk. METHODS: Data on 1,566 self-responding men (weighted N = 1,522) from the Survey of Assets and Health Dynamics among the Oldest Old (AHEAD) were linked to Medicare claims and the National Death Index. Dual use was indirectly indicated when the self-reported number of hospital episodes in the 12 months prior to baseline was greater than that observed in the Medicare claims. The independent association of dual use with mortality was estimated using proportional hazards regression. RESULTS: 96 (11%) of the veterans were classified as dual users. 766 men (50.3%) had died by December 31, 2002, including 64.9% of the dual users and 49.3% of all others, for an attributable mortality risk of 15.6% (p < .003). Adjusting for demographics, socioeconomics, comorbidity, hospitalization status, and selection bias at baseline, as well as subsequent hospitalization for ambulatory care sensitive conditions, the independent effect of dual use was a 56.1% increased relative risk of mortality (AHR = 1.561; p = .009). CONCLUSION: An indirect measure of veterans' dual use of the VHA and Medicare systems, based on inpatient services, was associated with an increased risk of death. Further examination of dual use, especially in the outpatient setting, is needed, because dual inpatient and dual outpatient use may be different phenomena

    Fine-Tuning and the Stability of Recurrent Neural Networks

    Get PDF
    A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems

    CD3Z Genetic Polymorphism in Immune Response to Hepatitis B Vaccination in Two Independent Chinese Populations

    Get PDF
    Vaccination against hepatitis B virus is an effective and routine practice that can prevent infection. However, vaccine-induced immunity to hepatitis B varies among individuals. CD4+ T helper cells, which play an important role in both cellular and humoral immunity, are involved in the immune response elicited by vaccination. Polymorphisms in the genes involved in stimulating the activation and proliferation of CD4+ T helper cells may influence the immune response to hepatitis B vaccination. In the first stage of the present study, a total of 111 single nucleotide polymorphisms (SNPs) in 17 genes were analyzed, using the iPLEX MassARRAY system, among 214 high responders and 107 low responders to hepatitis B vaccination. Three SNPs (rs12133337 and rs10918706 in CD3Z, rs10912564 in OX40L) were associated significantly with the immune response to hepatitis B vaccination (P = 0.008, 0.041, and 0.019, respectively). The three SNPs were analyzed further with the TaqMan-MGB or TaqMan-BHQ probe-based real-time polymerase chain reaction in another independent population, which included 1090 high responders and 636 low responders. The minor allele ‘C’ of rs12133337 continued to show an association with a lower response to hepatitis B vaccination (P = 0.033, odds radio = 1.28, 95% confidence interval = 1.01–1.61). Furthermore, in the stratified analysis for both the first and second populations, the association of the minor allele ‘C’ of rs12133337 with a lower response to hepatitis B vaccination was more prominent after individuals who were overweight or obese (body mass index ≥25 kg/m2) were excluded (1st stage: P = 0.003, 2nd stage: P = 0.002, P-combined = 9.47e-5). These findings suggest that the rs12133337 polymorphism in the CD3Z gene might affect the immune response to hepatitis B vaccination, and that a lower BMI might increase the contribution of the polymorphism to immunity to hepatitis B vaccination

    Abnormalities of White Matter Microstructure in Unmedicated Obsessive-Compulsive Disorder and Changes after Medication

    Get PDF
    BACKGROUND: Abnormalities of myelin integrity have been reported in obsessive-compulsive disorder (OCD) using multi-parameter maps of diffusion tensor imaging (DTI). However, it was still unknown to what degree these abnormalities might be affected by pharmacological treatment. OBJECTIVE: To investigate whether the abnormalities of white matter microstructure including myelin integrity exist in OCD and whether they are affected by medication. METHODOLOGY AND PRINCIPAL FINDINGS: Parameter maps of DTI, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were acquired from 27 unmedicated OCD patients (including 13 drug-naïve individuals) and 23 healthy controls. Voxel-based analysis was then performed to detect regions with significant group difference. We compared the DTI-derived parameters of 15 patients before and after 12-week Selective Serotonin Reuptake Inhibitor (SSRI) therapies. Significant differences of DTI-derived parameters were observed between OCD and healthy groups in multiple structures, mainly within the fronto-striato-thalamo-cortical loop. An increased RD in combination with no change in AD among OCD patients was found in the left medial superior frontal gyrus, temporo-parietal lobe, occipital lobe, striatum, insula and right midbrain. There was no statistical difference in DTI-derived parameters between drug-naive and previously medicated OCD patients. After being medicated, OCD patients showed a reduction in RD of the left striatum and right midbrain, and in MD of the right midbrain. CONCLUSION: Our preliminary findings suggest that abnormalities of white matter microstructure, particularly in terms of myelin integrity, are primarily located within the fronto-striato-thalamo-cortical circuit of individuals with OCD. Some abnormalities may be partly reversed by SSRI treatment

    Diverse Roles and Interactions of the SWI/SNF Chromatin Remodeling Complex Revealed Using Global Approaches

    Get PDF
    A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5′ ends, RNA Polymerases II and III, and enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins). Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of interactions than previously appreciated

    Engineered polyketide biosynthesis and biocatalysis in Escherichia coli

    Get PDF
    Polyketides are important bioactive natural products biosynthesized by bacteria, fungi, and plants. The enzymes that synthesize polyketides are collectively referred to as polyketide synthases (PKSs). Because many of the natural hosts that produce polyketides are difficult to culture or manipulate, establishing a universal heterologous host that is genetically tractable has become an important goal toward the engineered biosynthesis of polyketides and analogues. Here, we summarize the recent progresses in engineering Escherichia coli as a heterologous host for reconstituting PKSs of different types. Our increased understanding of PKS enzymology and structural biology, combined with new tools in protein engineering, metabolic engineering, and synthetic biology, has firmly established E. coli as a powerful host for producing polyketides
    corecore