974 research outputs found

    Temporal and Spectral Correlations of Cyg X-1

    Get PDF
    Temporal and spectral properties of X-ray rapid variability of Cyg X-1 are studied by an approach of correlation analysis in the time domain on different time scales. The correlation coefficients between the total intensity in 2-60 keV and the hardness ratio of 13-60 keV to 2-6 keV band on the time scale of about 1 ms are always negative in all states. For soft states, the correlation coefficients are positive on all the time scales from about 0.01 s to 100 s, which is significantly different with that for transition and low states. Temporal structures in high energy band are narrower than that in low energy band in quite a few cases. The delay of high energy photons relative to low energy ones in the X-ray variations has also been revealed by the correlation analysis. The implication of observed temporal and spectral characteristics to the production region and mechanism of Cyg X-1 X-ray variations is discussed.Comment: 17 pages, 6 figures included, to appear in Ap

    Fine-structure in the nonthermal X-ray emission of SNR RX J1713.7-3946 revealed by Chandra

    Full text link
    We present morphological and spectroscopic studies of the northwest rim of the supernova remnant RX J1713.7-3946 based on observations by the Chandra X-ray observatory. We found a complex network of nonthermal (synchrotron) X-ray filaments, as well as a 'void' type structure -- a dim region of a circular shape -- in the northwest rim. It is remarkable that despite distinct brightness variations, the X-ray spectra everywhere in this region can be well fitted with a power-law model with photon index around 2.3. We briefly discuss some implications of these results and argue that the resolved X-ray features in the northwest rim may challenge the perceptions of standard (diffusive shock-acceleration) models concerning the production, propagation and radiation of relativistic particles in supernova remnants.Comment: 8 pages, 9 figures; accepted for publication in A&A; significant additions for publication in Main journal (previous version was for A&A Letter); a manuscript (as a single PDF file, 501kb) including all figures is available at http://www.astro.isas.ac.jp/~uchiyama/publication/h4106.pd

    Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula

    Get PDF
    We have studied the variability of the Crab Nebula both in the visible and in X -rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X -ray observations were made with the Chandra X -Ray Observatory. We observe wisps forming and peeling off from the region commonly associated with the termination shock of the pulsar wind. We measure a number of properties of the wisps to the Northwest of the pulsar. We find that the exact locations of the wisps in the optical and in X-rays are similar but not coincident, with the X-ray wisp preferentially located closer to the pulsar. Our measurements and their implications are interpreted in terms of a MHD model. We find that the optical wisps are more strongly Doppler boosted than X-ray wisps, a result inconsistent with current MHD simulations. Indeed the inferred optical boosting factors exceed MHD simulation values by about one order of magnitude. These findings suggest that the optical and X-ray wisps are not produced by the same particle distribution, a result which is consistent with the spatial differences. Further, the X -ray wisps and optical wisps are apparently developing independently from each other, but every time a new X ]ray wisp is born so is an optical wisp, thus pointing to a possible common cause or trigger. Finally, we find that the typical wisp formation rate is approximately once per year, interestingly at about the same rate of production of the large gamma-ray flares

    Decay process accelerated by tunneling in its very early stage

    Get PDF
    We examine a fast decay process that arises in the transition period between the Gaussian and exponential decay processes in quantum decay systems. It is usually expected that the decay is decelerated by a confinement potential barrier. However, we find a case where the decay in the transition period is accelerated by tunneling through a confinement potential barrier. We show that the acceleration gives rise to an appreciable effect on the time evolution of the nonescape probability of the decay system.Comment: 4 pages, 6 figures; accepted for publication in Phys. Rev.

    The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs

    Get PDF
    We identify the pressure--broadened red wings of the saturated potassium resonance lines at 7700 \AA as the source of anomalous absorption seen in the near-infrared spectra of Gliese 229B and, by extension, of methane dwarfs in general. This conclusion is supported by the recent work of Tsuji {\it et al.} 1999, though unlike them we find that dust need not be invoked to explain the spectra of methane dwarfs shortward of 1 micron. We find that a combination of enhanced alkali abundances due to rainout and a more realistic non-Lorentzian theory of resonant line shapes may be all that is needed to properly account for these spectra from 0.5 to 1.0 microns. The WFPC2 II measurement of Gliese 229B is also consistent with this theory. Furthermore, a combination of the blue wings of this K I resonance doublet, the red wings of the Na D lines at 5890 \AA, and, perhaps, the Li I line at 6708 \AA can explain in a natural way the observed WFPC2 RR band flux of Gliese 229B. Hence, we conclude that the neutral alkali metals play a central role in the near-infrared and optical spectra of methane dwarfs and that their lines have the potential to provide crucial diagnostics of brown dwarfs. We speculate on the systematics of the near-infrared and optical spectra of methane dwarfs, for a given mass and composition, that stems from the progressive burial with decreasing \teff of the alkali metal atoms to larger pressures and depths.Comment: Revised and accepted to Ap.J. volume 531, March 1, 2000, also available at http://jupiter.as.arizona.edu/~burrows/papers/BMS.p

    Canonical and Microcanonical Distributions for Fermi Systems

    Full text link
    Recursion relations are presented that allow exact calculation of canonical and microcanonical partition functions of degenerate Fermi systems, assuming no explicit two-body interactions. Calculations of the level density, sorted by angular momentum, are presented for Ni-56 are presented. The issue of treating unbound states is also addressed.Comment: 5 pages, 5 figure

    Magnetic Field Structure of the Crab Pulsar Wind Nebula Revealed with IXPE

    Full text link
    We report a detailed study of the magnetic-field structure of the Crab pulsar wind nebula, using the X-ray polarization data in 2--8~keV obtained with the Imaging X-ray Polarimetry Explorer. Contamination of the pulsar emission to the data of the nebula region was removed through application of a stringent pulsation phase-cut, extracting a phase range of 0.7--1.0 only. We found that the electric field vector polarization angle (PA) was about 130∘130^{\circ} from north to east with the polarization degree (PD) of about 25\% at the pulsar position, indicating that the direction of the toroidal magnetic field is perpendicular to the pulsar spin axis in the region close to the termination shock. The PA gradually deviated from the angle as an increasing function of the distance from the pulsar. There was a region of a low PD to the west of the X-ray torus. Although such a region is expected to be located at the torus edge, where geometrical depolarization due to a steep spatial variation of the PA is expected, the observed low-PD region positionally deviated from the edge. We found that the region of low PD positionally coincided with a dense filament seen in the optical band, and conjecture that the low-PD region may be produced through deflection of the pulsar wind. By comparing the values of the PD at the pulsar position between the data and a model, in which toroidal and turbulent magnetic fields were considered, we estimated the fractional energy of the turbulent magnetic field to be about 2/32/3 of the total. We also evaluated a potential polarization of the northern jet in the nebula and derived the PD and PA to be about 30%30\% and 120∘120^{\circ}, respectively.Comment: This is a pre-copyedited, author-produced version of an article accepted for publication in PASJ following peer revie

    Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium

    Full text link
    We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 Ό\muTorr of H2_\text{2}, N2_\text{2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H2_2 and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O2_2 are extracted from measurements using air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A \textbf{69}, 22105 (2004)].Comment: 11 pages, 8 figure
    • 

    corecore